A. Dalcalı, Onursal Çetin, C. Ocak, Feyzullah Temurtaş
{"title":"基于多层神经网络的电磁发射线圈弹丸受力预测","authors":"A. Dalcalı, Onursal Çetin, C. Ocak, Feyzullah Temurtaş","doi":"10.35377/saucis.01.03.496233","DOIUrl":null,"url":null,"abstract":"The force on the projectile in the electromagnetic launchers varies according to the the excitation value and the position of the projectile in the winding. In this study, 3D model of coil and projectile used in electromagnetic launchers have been created and analyzed by finite element method. The force characteristic on the projectile has been obtained by changing the excitation value of the winding and the position of the projectile using parametric solution method. In finite element analysis, more accurate analysis can be performed by defining smaller solution steps. However, the analysis time is prolonged due to the increase in the number of variables. Taking into consideration the duration of analysis, the force prediction has been carried out using multilayer neural network models consisting of one hidden layer and two hidden layers. Successful results have been obtained in the force prediction studies with multilayer neural networks.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of the Force on a Projectile in an Electromagnetic Launcher Coil with Multilayer Neural Network\",\"authors\":\"A. Dalcalı, Onursal Çetin, C. Ocak, Feyzullah Temurtaş\",\"doi\":\"10.35377/saucis.01.03.496233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The force on the projectile in the electromagnetic launchers varies according to the the excitation value and the position of the projectile in the winding. In this study, 3D model of coil and projectile used in electromagnetic launchers have been created and analyzed by finite element method. The force characteristic on the projectile has been obtained by changing the excitation value of the winding and the position of the projectile using parametric solution method. In finite element analysis, more accurate analysis can be performed by defining smaller solution steps. However, the analysis time is prolonged due to the increase in the number of variables. Taking into consideration the duration of analysis, the force prediction has been carried out using multilayer neural network models consisting of one hidden layer and two hidden layers. Successful results have been obtained in the force prediction studies with multilayer neural networks.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis.01.03.496233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis.01.03.496233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of the Force on a Projectile in an Electromagnetic Launcher Coil with Multilayer Neural Network
The force on the projectile in the electromagnetic launchers varies according to the the excitation value and the position of the projectile in the winding. In this study, 3D model of coil and projectile used in electromagnetic launchers have been created and analyzed by finite element method. The force characteristic on the projectile has been obtained by changing the excitation value of the winding and the position of the projectile using parametric solution method. In finite element analysis, more accurate analysis can be performed by defining smaller solution steps. However, the analysis time is prolonged due to the increase in the number of variables. Taking into consideration the duration of analysis, the force prediction has been carried out using multilayer neural network models consisting of one hidden layer and two hidden layers. Successful results have been obtained in the force prediction studies with multilayer neural networks.