{"title":"在低功耗广域物联网网络中最大化覆盖","authors":"Alan Marchiori","doi":"10.1109/PERCOMW.2017.7917608","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) promises to allow everyday objects to connect to the Internet and seamlessly interact with users and other machines. Essential for the IoT to function is a reliable Internet connection. In 2016 the International Telecommunication Union reports 3.9 billion people - 53% of the world's population are not using the Internet [1]. Projects like Loon (X) and Aquila (Facebook) aim to solve this connectivity gap using atmospheric satellites to deliver 4G-like signals to underserved regions. With the recent interest in low-power wide-area networks (LPWAN) in the license-free ISM bands, we consider using atmospheric satellites to improve coverage in LPWAN networks. We find that LPWAN technologies are compatible with atmospheric satellites and demonstrate that significant connectivity gains are possible by locating an LPWAN base station at altitude from 1 km – 28 km when compared to a typical ground-based base station.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Maximizing coverage in low-power wide-area IoT networks\",\"authors\":\"Alan Marchiori\",\"doi\":\"10.1109/PERCOMW.2017.7917608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) promises to allow everyday objects to connect to the Internet and seamlessly interact with users and other machines. Essential for the IoT to function is a reliable Internet connection. In 2016 the International Telecommunication Union reports 3.9 billion people - 53% of the world's population are not using the Internet [1]. Projects like Loon (X) and Aquila (Facebook) aim to solve this connectivity gap using atmospheric satellites to deliver 4G-like signals to underserved regions. With the recent interest in low-power wide-area networks (LPWAN) in the license-free ISM bands, we consider using atmospheric satellites to improve coverage in LPWAN networks. We find that LPWAN technologies are compatible with atmospheric satellites and demonstrate that significant connectivity gains are possible by locating an LPWAN base station at altitude from 1 km – 28 km when compared to a typical ground-based base station.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing coverage in low-power wide-area IoT networks
The Internet of Things (IoT) promises to allow everyday objects to connect to the Internet and seamlessly interact with users and other machines. Essential for the IoT to function is a reliable Internet connection. In 2016 the International Telecommunication Union reports 3.9 billion people - 53% of the world's population are not using the Internet [1]. Projects like Loon (X) and Aquila (Facebook) aim to solve this connectivity gap using atmospheric satellites to deliver 4G-like signals to underserved regions. With the recent interest in low-power wide-area networks (LPWAN) in the license-free ISM bands, we consider using atmospheric satellites to improve coverage in LPWAN networks. We find that LPWAN technologies are compatible with atmospheric satellites and demonstrate that significant connectivity gains are possible by locating an LPWAN base station at altitude from 1 km – 28 km when compared to a typical ground-based base station.