信息分析的组合几何方法及其在大数据中的应用

V. Vereshchaga, Y. Adoniev
{"title":"信息分析的组合几何方法及其在大数据中的应用","authors":"V. Vereshchaga, Y. Adoniev","doi":"10.33842/2313-125X/2021/20/68/75","DOIUrl":null,"url":null,"abstract":"The article proposes a composite geometric method for analysis of information in Big Data sets at the stage of their primary processing and “cleaning”. The method is based on the methods of the Baluba-Naydysh point calculus is a preparatory stage when using the structural geometric modelling of Big Data. the minimal use of machine resources when working with Big Data significantly reduces the cost of obtaining valuable conclusions and forecasts.","PeriodicalId":188754,"journal":{"name":"Modern problems of modeling","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPOSITIONAL GEOMETRIC METHOD OF INFORMATION ANALYSIS AND ITS APPLICATION WHEN WORKING WITH BIG DATA\",\"authors\":\"V. Vereshchaga, Y. Adoniev\",\"doi\":\"10.33842/2313-125X/2021/20/68/75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes a composite geometric method for analysis of information in Big Data sets at the stage of their primary processing and “cleaning”. The method is based on the methods of the Baluba-Naydysh point calculus is a preparatory stage when using the structural geometric modelling of Big Data. the minimal use of machine resources when working with Big Data significantly reduces the cost of obtaining valuable conclusions and forecasts.\",\"PeriodicalId\":188754,\"journal\":{\"name\":\"Modern problems of modeling\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern problems of modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33842/2313-125X/2021/20/68/75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern problems of modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33842/2313-125X/2021/20/68/75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种复合几何方法,用于大数据集初级处理和“清洗”阶段的信息分析。该方法基于Baluba-Naydysh点演算的方法,是使用大数据结构几何建模的准备阶段。在处理大数据时,机器资源的最少使用大大降低了获得有价值结论和预测的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPOSITIONAL GEOMETRIC METHOD OF INFORMATION ANALYSIS AND ITS APPLICATION WHEN WORKING WITH BIG DATA
The article proposes a composite geometric method for analysis of information in Big Data sets at the stage of their primary processing and “cleaning”. The method is based on the methods of the Baluba-Naydysh point calculus is a preparatory stage when using the structural geometric modelling of Big Data. the minimal use of machine resources when working with Big Data significantly reduces the cost of obtaining valuable conclusions and forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SYSTEM OF POLYPOINT TRANSFORMATIONS OF A GROUP OF OBJECTS IN ONE BASIS Minimization of integral risk of emergency on the example of Blyznyukivskyi district of Kharkiv region CREATION OF A DESIGN LAYOUT OF PAGES AND IDENTICS OF AN INTERNET COSMETICS STORE PROCEDURAL GENERATION OF VOXEL LANDSCAPES BASED ON ISOSURFACES USING MULTITHREADING GENERALIZED APPROACH FOR OBJECT SELECTIVE SEARCH IN IMAGES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1