Satyen Abrol, L. Khan, V. Khadilkar, B. Thuraisingham, Tyrone Cadenhead
{"title":"SNODSOC的设计与实现:用于社会网络分析的新型类检测","authors":"Satyen Abrol, L. Khan, V. Khadilkar, B. Thuraisingham, Tyrone Cadenhead","doi":"10.1109/ISI.2012.6284312","DOIUrl":null,"url":null,"abstract":"This paper describes a framework, SNODSOC (Stream based novel class detection for social network analysis), that detects evolving patterns and trends in social microblogs. SNODSOC extends our powerful data mining system, SNOD (Stream-based Novel Class Detection) for now detecting novel patterns and trends within microblogs.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design and implementation of SNODSOC: Novel class detection for social network analysis\",\"authors\":\"Satyen Abrol, L. Khan, V. Khadilkar, B. Thuraisingham, Tyrone Cadenhead\",\"doi\":\"10.1109/ISI.2012.6284312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a framework, SNODSOC (Stream based novel class detection for social network analysis), that detects evolving patterns and trends in social microblogs. SNODSOC extends our powerful data mining system, SNOD (Stream-based Novel Class Detection) for now detecting novel patterns and trends within microblogs.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of SNODSOC: Novel class detection for social network analysis
This paper describes a framework, SNODSOC (Stream based novel class detection for social network analysis), that detects evolving patterns and trends in social microblogs. SNODSOC extends our powerful data mining system, SNOD (Stream-based Novel Class Detection) for now detecting novel patterns and trends within microblogs.