基于燃料的椰树爬树机器人的设计与分析

A. T., R. K. Megalingam
{"title":"基于燃料的椰树爬树机器人的设计与分析","authors":"A. T., R. K. Megalingam","doi":"10.1109/ROMA55875.2022.9915670","DOIUrl":null,"url":null,"abstract":"With an average of sixty million metric tons of production, coconut plays a significant role in the economy of many countries in South Asia. India produces 25% of the world’s coconuts, and Kerala has about half of India’s. Demand for this cash crop rises daily as consumption spreads across different areas. Upon this increased demand, the workforce shortage also exists. The conventional method of coconut harvesting is no longer attracting the educated youth as they are looking for easier and safer jobs. The main objectives to tackle in this research are problems such as robotic arm reachability issues and low battery life while carrying a higher load. Considering all these factors, we are introducing a petrol engine-based semi-automatic robotic coconut tree climber that can take a person to the top of the tree to harvest the nuts. The introduction of a petrol engine in this climber for drive power limits the battery power usage for controlling applications. This robotic climber uses an anti-fall three-layer contact design, which helps the robot hang on to the tree even if the power gets cut off. The three-layer contact design ensured more stability for the climber. This paper discusses mechanical design, system architecture, dynamic simulation, and static structural analysis.","PeriodicalId":121458,"journal":{"name":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Analysis of Fuel-Based Robotic Coconut Tree Climber\",\"authors\":\"A. T., R. K. Megalingam\",\"doi\":\"10.1109/ROMA55875.2022.9915670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an average of sixty million metric tons of production, coconut plays a significant role in the economy of many countries in South Asia. India produces 25% of the world’s coconuts, and Kerala has about half of India’s. Demand for this cash crop rises daily as consumption spreads across different areas. Upon this increased demand, the workforce shortage also exists. The conventional method of coconut harvesting is no longer attracting the educated youth as they are looking for easier and safer jobs. The main objectives to tackle in this research are problems such as robotic arm reachability issues and low battery life while carrying a higher load. Considering all these factors, we are introducing a petrol engine-based semi-automatic robotic coconut tree climber that can take a person to the top of the tree to harvest the nuts. The introduction of a petrol engine in this climber for drive power limits the battery power usage for controlling applications. This robotic climber uses an anti-fall three-layer contact design, which helps the robot hang on to the tree even if the power gets cut off. The three-layer contact design ensured more stability for the climber. This paper discusses mechanical design, system architecture, dynamic simulation, and static structural analysis.\",\"PeriodicalId\":121458,\"journal\":{\"name\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMA55875.2022.9915670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Symposium in Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA55875.2022.9915670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

椰子的平均产量为6000万吨,在南亚许多国家的经济中发挥着重要作用。印度的椰子产量占世界的25%,而喀拉拉邦的椰子产量约占印度的一半。随着不同地区的消费扩大,对这种经济作物的需求与日俱增。在这种需求增加的情况下,劳动力短缺也存在。传统的收割椰子的方法不再吸引受过教育的年轻人,因为他们正在寻找更容易和更安全的工作。本研究的主要目标是解决机械臂可达性问题和承载更高负载时电池寿命低等问题。考虑到所有这些因素,我们正在推出一种基于汽油发动机的半自动机器人椰子树爬树器,它可以把人带到树顶收获坚果。在这个爬升器中引入汽油发动机作为驱动动力,限制了控制应用的电池电量使用。这款攀爬机器人采用了防坠落的三层接触式设计,即使停电,也能帮助机器人抓住树。三层接触面设计确保了攀爬器的稳定性。本文讨论了机械设计、系统架构、动态仿真和静力结构分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of Fuel-Based Robotic Coconut Tree Climber
With an average of sixty million metric tons of production, coconut plays a significant role in the economy of many countries in South Asia. India produces 25% of the world’s coconuts, and Kerala has about half of India’s. Demand for this cash crop rises daily as consumption spreads across different areas. Upon this increased demand, the workforce shortage also exists. The conventional method of coconut harvesting is no longer attracting the educated youth as they are looking for easier and safer jobs. The main objectives to tackle in this research are problems such as robotic arm reachability issues and low battery life while carrying a higher load. Considering all these factors, we are introducing a petrol engine-based semi-automatic robotic coconut tree climber that can take a person to the top of the tree to harvest the nuts. The introduction of a petrol engine in this climber for drive power limits the battery power usage for controlling applications. This robotic climber uses an anti-fall three-layer contact design, which helps the robot hang on to the tree even if the power gets cut off. The three-layer contact design ensured more stability for the climber. This paper discusses mechanical design, system architecture, dynamic simulation, and static structural analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cybersecurity Infrastructure adoption Model for Malware Mitigation in Small Medium Enterprises (SME) Interference Mitigation Techniques For The Operation Of Unmanned Aerial Vehicle (Uav) Depth Map Information from Stereo Image Pairs using Deep Learning and Bilateral Filter for Machine Vision Application Vehicle Anti-theft Face Recognition System, Speed Control and Obstacle Detection using Raspberry Pi Remote Patient Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1