{"title":"引入中间件级动态绿色调度的节能服务器配置","authors":"Daniel Balouek-Thomert, E. Caron, L. Lefèvre","doi":"10.1109/IPDPSW.2015.121","DOIUrl":null,"url":null,"abstract":"Several approaches to reduce the power consumption of data enters have been described in the literature, most of which aim to improve energy efficiency by trading off performance for reducing power consumption. However, these approaches do not always provide means for administrators and users to specify how they want to explore such trade-offs. This work provides techniques for assigning jobs to distributed resources, exploring energy efficient resource provisioning. We use middleware-level mechanisms to adapt resource allocation according to energy-related events and user-defined rules. A proposed framework enables developers, users and system administrators to specify and explore energy efficiency and performance trade-offs without detailed knowledge of the underlying hardware platform. Evaluation of the proposed solution under three scheduling policies shows gains of 25% in energy-efficiency with minimal impact on the overall application performance. We also evaluate reactivity in the adaptive resource provisioning.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Energy-Aware Server Provisioning by Introducing Middleware-Level Dynamic Green Scheduling\",\"authors\":\"Daniel Balouek-Thomert, E. Caron, L. Lefèvre\",\"doi\":\"10.1109/IPDPSW.2015.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several approaches to reduce the power consumption of data enters have been described in the literature, most of which aim to improve energy efficiency by trading off performance for reducing power consumption. However, these approaches do not always provide means for administrators and users to specify how they want to explore such trade-offs. This work provides techniques for assigning jobs to distributed resources, exploring energy efficient resource provisioning. We use middleware-level mechanisms to adapt resource allocation according to energy-related events and user-defined rules. A proposed framework enables developers, users and system administrators to specify and explore energy efficiency and performance trade-offs without detailed knowledge of the underlying hardware platform. Evaluation of the proposed solution under three scheduling policies shows gains of 25% in energy-efficiency with minimal impact on the overall application performance. We also evaluate reactivity in the adaptive resource provisioning.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Aware Server Provisioning by Introducing Middleware-Level Dynamic Green Scheduling
Several approaches to reduce the power consumption of data enters have been described in the literature, most of which aim to improve energy efficiency by trading off performance for reducing power consumption. However, these approaches do not always provide means for administrators and users to specify how they want to explore such trade-offs. This work provides techniques for assigning jobs to distributed resources, exploring energy efficient resource provisioning. We use middleware-level mechanisms to adapt resource allocation according to energy-related events and user-defined rules. A proposed framework enables developers, users and system administrators to specify and explore energy efficiency and performance trade-offs without detailed knowledge of the underlying hardware platform. Evaluation of the proposed solution under three scheduling policies shows gains of 25% in energy-efficiency with minimal impact on the overall application performance. We also evaluate reactivity in the adaptive resource provisioning.