利用几何对偶的定向线插值

Sang-Jun Park, Jechang Jeong, Gwanggil Jeon
{"title":"利用几何对偶的定向线插值","authors":"Sang-Jun Park, Jechang Jeong, Gwanggil Jeon","doi":"10.1109/DICTA.2010.24","DOIUrl":null,"url":null,"abstract":"In this paper, a direction-oriented covariance based deinterlacing method is presented. First, the local direction of edge is determined by modified edge-based line average (MELA) method. Then, based on the geometric duality, the optimal interpolation coefficients for the neighbor pixels of corresponding direction are estimated using the Wiener filtering. Experimental results prove that the proposed method provides a significant improvement over the other existing deinterlacing methods.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"144 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direction-Oriented Line Interpolation Using Geometric Duality\",\"authors\":\"Sang-Jun Park, Jechang Jeong, Gwanggil Jeon\",\"doi\":\"10.1109/DICTA.2010.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a direction-oriented covariance based deinterlacing method is presented. First, the local direction of edge is determined by modified edge-based line average (MELA) method. Then, based on the geometric duality, the optimal interpolation coefficients for the neighbor pixels of corresponding direction are estimated using the Wiener filtering. Experimental results prove that the proposed method provides a significant improvement over the other existing deinterlacing methods.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"144 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于方向协方差的去隔行方法。首先,采用改进的基于边缘的线平均(MELA)方法确定边缘的局部方向;然后,基于几何对偶性,利用维纳滤波估计出对应方向相邻像素的最优插值系数;实验结果表明,与现有的去隔行方法相比,该方法有明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direction-Oriented Line Interpolation Using Geometric Duality
In this paper, a direction-oriented covariance based deinterlacing method is presented. First, the local direction of edge is determined by modified edge-based line average (MELA) method. Then, based on the geometric duality, the optimal interpolation coefficients for the neighbor pixels of corresponding direction are estimated using the Wiener filtering. Experimental results prove that the proposed method provides a significant improvement over the other existing deinterlacing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1