带显式多接地中性线的实用低压馈线的包容性模型

Chin Hong Tam, F. Geth, Mithulananthan Nadarajah
{"title":"带显式多接地中性线的实用低压馈线的包容性模型","authors":"Chin Hong Tam, F. Geth, Mithulananthan Nadarajah","doi":"10.1109/iSPEC54162.2022.10033019","DOIUrl":null,"url":null,"abstract":"With increasing penetration of distributed energy resources in the distribution network, voltage levels become a concern. However, power flow models for these networks are rare due to the complexity to collect and manage large amounts of feeder data in a way that suits engineering analysis. Unfortunately, even the network model exists, the quality of data may not be high enough for power flow analysis. In this paper, a comprehensive 4-wire low-voltage network is built, starting from reliable topology and approximate sequence impedances, and simulation results are compared to the uncleaned data and a simplified 3-wire representation. Power flow with photovoltaic penetration is also carried out. Results indicate that the improved network data has a higher occurrence of undervoltage situations. Using a 4-wire network with neutral wire can more accurately reflect the influence of neutral-to-ground voltage, even in the presence of frequent grounding. Both undervoltage and overvoltage deteriorate with PV penetration due to neutral voltage fluctuation.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Inclusive Model for a Practical Low-Voltage Feeder with Explicit Multi-Grounded Neutral Wire\",\"authors\":\"Chin Hong Tam, F. Geth, Mithulananthan Nadarajah\",\"doi\":\"10.1109/iSPEC54162.2022.10033019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing penetration of distributed energy resources in the distribution network, voltage levels become a concern. However, power flow models for these networks are rare due to the complexity to collect and manage large amounts of feeder data in a way that suits engineering analysis. Unfortunately, even the network model exists, the quality of data may not be high enough for power flow analysis. In this paper, a comprehensive 4-wire low-voltage network is built, starting from reliable topology and approximate sequence impedances, and simulation results are compared to the uncleaned data and a simplified 3-wire representation. Power flow with photovoltaic penetration is also carried out. Results indicate that the improved network data has a higher occurrence of undervoltage situations. Using a 4-wire network with neutral wire can more accurately reflect the influence of neutral-to-ground voltage, even in the presence of frequent grounding. Both undervoltage and overvoltage deteriorate with PV penetration due to neutral voltage fluctuation.\",\"PeriodicalId\":129707,\"journal\":{\"name\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sustainable Power and Energy Conference (iSPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSPEC54162.2022.10033019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10033019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着分布式能源在配电网中的渗透程度越来越高,电压水平成为人们关注的问题。然而,由于以适合工程分析的方式收集和管理大量馈线数据的复杂性,这些网络的潮流模型很少。不幸的是,即使存在网络模型,数据的质量也可能不足以用于潮流分析。本文从可靠的拓扑和近似的序列阻抗出发,构建了一个全面的4线制低压网络,并将仿真结果与未清洗的数据和简化的3线制表示进行了比较。还进行了光伏渗透的潮流。结果表明,改进后的网络数据出现欠压情况的概率较高。使用带有中性线的4线网络,即使在频繁接地的情况下,也能更准确地反映中性对地电压的影响。由于中性电压波动,欠电压和过电压都随着光伏的渗透而恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Inclusive Model for a Practical Low-Voltage Feeder with Explicit Multi-Grounded Neutral Wire
With increasing penetration of distributed energy resources in the distribution network, voltage levels become a concern. However, power flow models for these networks are rare due to the complexity to collect and manage large amounts of feeder data in a way that suits engineering analysis. Unfortunately, even the network model exists, the quality of data may not be high enough for power flow analysis. In this paper, a comprehensive 4-wire low-voltage network is built, starting from reliable topology and approximate sequence impedances, and simulation results are compared to the uncleaned data and a simplified 3-wire representation. Power flow with photovoltaic penetration is also carried out. Results indicate that the improved network data has a higher occurrence of undervoltage situations. Using a 4-wire network with neutral wire can more accurately reflect the influence of neutral-to-ground voltage, even in the presence of frequent grounding. Both undervoltage and overvoltage deteriorate with PV penetration due to neutral voltage fluctuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization strategy for multi-area DC dispatching control considering frequency constraints Design and Application Research of Synchronous Temporary Block Function between Valve Groups on Modular Multilevel Converter Ultra High Voltage Direct Current System A Multi-Stack Vanadium Redox Flow Battery Model Considering Electrolyte Transfer Delay Analysis of Kuramoto models for AC microgrids based on droop control Nodal Pricing Comparison between DCOPF and ACOPF: Case Studies for the Power Systems in Iceland and Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1