基于RGB-D数据的人跟随机器人实时视觉目标跟踪

Youngwoo Yoon, Woo-han Yun, H. Yoon, Jaehong Kim
{"title":"基于RGB-D数据的人跟随机器人实时视觉目标跟踪","authors":"Youngwoo Yoon, Woo-han Yun, H. Yoon, Jaehong Kim","doi":"10.1109/ICPR.2014.387","DOIUrl":null,"url":null,"abstract":"This paper describes a novel RGB-D-based visual target tracking method for person-following robots. We enhance a single-object tracker, which combines RGB and depth information, by exploiting two different types of distracters. First set of distracters includes objects existing near-by the target, and the other set is for objects looking similar to the target. The proposed algorithm reduces tracking drifts and wrong target re-identification by exploiting the distracters. Experiments on real-world video sequences demonstrating a person-following problem show a significant improvement over the method without tracking distracters and state-of-the-art RGB-based trackers. A mobile robot following a person is tested in real environment.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Real-Time Visual Target Tracking in RGB-D Data for Person-Following Robots\",\"authors\":\"Youngwoo Yoon, Woo-han Yun, H. Yoon, Jaehong Kim\",\"doi\":\"10.1109/ICPR.2014.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel RGB-D-based visual target tracking method for person-following robots. We enhance a single-object tracker, which combines RGB and depth information, by exploiting two different types of distracters. First set of distracters includes objects existing near-by the target, and the other set is for objects looking similar to the target. The proposed algorithm reduces tracking drifts and wrong target re-identification by exploiting the distracters. Experiments on real-world video sequences demonstrating a person-following problem show a significant improvement over the method without tracking distracters and state-of-the-art RGB-based trackers. A mobile robot following a person is tested in real environment.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种新的基于rgb - d的人跟踪机器人视觉目标跟踪方法。我们通过利用两种不同类型的干扰来增强单目标跟踪器,该跟踪器结合了RGB和深度信息。第一组干扰物包括目标附近存在的物体,另一组是看起来与目标相似的物体。该算法利用干扰因素减少了跟踪漂移和错误目标的再识别。在真实世界的视频序列上进行的实验表明,与没有跟踪干扰物和最先进的基于rgb的跟踪器的方法相比,该方法有了显著的改进。在真实环境中对移动机器人跟随人进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Visual Target Tracking in RGB-D Data for Person-Following Robots
This paper describes a novel RGB-D-based visual target tracking method for person-following robots. We enhance a single-object tracker, which combines RGB and depth information, by exploiting two different types of distracters. First set of distracters includes objects existing near-by the target, and the other set is for objects looking similar to the target. The proposed algorithm reduces tracking drifts and wrong target re-identification by exploiting the distracters. Experiments on real-world video sequences demonstrating a person-following problem show a significant improvement over the method without tracking distracters and state-of-the-art RGB-based trackers. A mobile robot following a person is tested in real environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1