离散事件建模和仿真方面改进机器学习系统

L. Capocchi, J. Santucci, B. Zeigler
{"title":"离散事件建模和仿真方面改进机器学习系统","authors":"L. Capocchi, J. Santucci, B. Zeigler","doi":"10.1109/UV.2018.8642161","DOIUrl":null,"url":null,"abstract":"Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.","PeriodicalId":110658,"journal":{"name":"2018 4th International Conference on Universal Village (UV)","volume":"1784 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete Event Modeling and Simulation Aspects to Improve Machine Learning Systems\",\"authors\":\"L. Capocchi, J. Santucci, B. Zeigler\",\"doi\":\"10.1109/UV.2018.8642161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.\",\"PeriodicalId\":110658,\"journal\":{\"name\":\"2018 4th International Conference on Universal Village (UV)\",\"volume\":\"1784 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV.2018.8642161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV.2018.8642161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散事件建模与仿真(M&S)和机器学习(ML)是两个适合系统建模的框架,当它们结合在一起时,可以为系统优化提供强大的工具。本文详细介绍了如何将离散事件M&S集成到ML概念和工具中,以改进ML框架的设计和使用。给出了不同改进的概述,并在DEVS形式化的框架中实现了三个关于强化学习(RL)的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete Event Modeling and Simulation Aspects to Improve Machine Learning Systems
Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Information Exchange: How Does It Affect Patient-Hospital Relationship? Adaptive Generalized Predictive Control Scheme for Single Phase GPV System Why Do We Need Bilateral Control? - In View Of Energy Consumption Autonomous Mobility and Energy Service Management in Future Smart Cities: An Overview Anonymous network communication based on SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1