M. Askarpour, C. Menghi, Gabriele Belli, M. Bersani, Patrizio Pelliccione
{"title":"注意差距:机器人任务规划与软件工程","authors":"M. Askarpour, C. Menghi, Gabriele Belli, M. Bersani, Patrizio Pelliccione","doi":"10.1145/3372020.3391561","DOIUrl":null,"url":null,"abstract":"In the context of robotic software, the selection of an appropriate planner is one of the most crucial software engineering decisions. Robot planners aim at computing plans (i.e., blueprint of actions) to accomplish a complex mission. While many planners have been proposed in the robotics literature, they are usually evaluated on showcase examples, making hard to understand whether they can be effectively (re)used for realising complex missions, with heterogeneous robots, and in real-world scenarios. In this paper we propose ENFORCE, a framework which allows wrapping FM-based planners into comprehensive software engineering tools, and considers complex robotic missions. ENFORCE relies on (i) realistic maps (e.g, fire escape maps) that describe the environment in which the robots are deployed; (ii) temporal logic for mission specification; and (iii) Uppaal model checker to compute plans that satisfy mission specifications. We evaluated ENFORCE by analyzing how it supports computing plans in real case scenarios, and by evaluating the generated plans in simulated and real environments. The results show that while ENFORCE is adequate for handling single-robot applications, the state explosion still represents a major barrier for reusing existing planners in multi-robot applications.","PeriodicalId":448369,"journal":{"name":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mind the gap: Robotic Mission Planning Meets Software Engineering\",\"authors\":\"M. Askarpour, C. Menghi, Gabriele Belli, M. Bersani, Patrizio Pelliccione\",\"doi\":\"10.1145/3372020.3391561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of robotic software, the selection of an appropriate planner is one of the most crucial software engineering decisions. Robot planners aim at computing plans (i.e., blueprint of actions) to accomplish a complex mission. While many planners have been proposed in the robotics literature, they are usually evaluated on showcase examples, making hard to understand whether they can be effectively (re)used for realising complex missions, with heterogeneous robots, and in real-world scenarios. In this paper we propose ENFORCE, a framework which allows wrapping FM-based planners into comprehensive software engineering tools, and considers complex robotic missions. ENFORCE relies on (i) realistic maps (e.g, fire escape maps) that describe the environment in which the robots are deployed; (ii) temporal logic for mission specification; and (iii) Uppaal model checker to compute plans that satisfy mission specifications. We evaluated ENFORCE by analyzing how it supports computing plans in real case scenarios, and by evaluating the generated plans in simulated and real environments. The results show that while ENFORCE is adequate for handling single-robot applications, the state explosion still represents a major barrier for reusing existing planners in multi-robot applications.\",\"PeriodicalId\":448369,\"journal\":{\"name\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372020.3391561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372020.3391561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mind the gap: Robotic Mission Planning Meets Software Engineering
In the context of robotic software, the selection of an appropriate planner is one of the most crucial software engineering decisions. Robot planners aim at computing plans (i.e., blueprint of actions) to accomplish a complex mission. While many planners have been proposed in the robotics literature, they are usually evaluated on showcase examples, making hard to understand whether they can be effectively (re)used for realising complex missions, with heterogeneous robots, and in real-world scenarios. In this paper we propose ENFORCE, a framework which allows wrapping FM-based planners into comprehensive software engineering tools, and considers complex robotic missions. ENFORCE relies on (i) realistic maps (e.g, fire escape maps) that describe the environment in which the robots are deployed; (ii) temporal logic for mission specification; and (iii) Uppaal model checker to compute plans that satisfy mission specifications. We evaluated ENFORCE by analyzing how it supports computing plans in real case scenarios, and by evaluating the generated plans in simulated and real environments. The results show that while ENFORCE is adequate for handling single-robot applications, the state explosion still represents a major barrier for reusing existing planners in multi-robot applications.