{"title":"采用线性控制方案的气动肌肉系统模糊逻辑控制","authors":"K. Balasubramanian, K. Rattan","doi":"10.1109/NAFIPS.2003.1226823","DOIUrl":null,"url":null,"abstract":"A linearizing control scheme for a highly nonlinear pneumatic muscle (PM) system is presented in this paper. Linearizing controllers have been widely used in the control of robotic systems. Since PM is a highly nonlinear system, the concept of linearizing control can be extended to the control of these muscles. Pneumatic muscle has air pressure as its input and the output is a displacement of the muscle. The system is considered to be a mass-spring-damper system with a nonlinear damper and a spring. This nonlinearity makes the design of a mathematical controller more difficult. The scheme presented in this paper uses fuzzy logic to implement the controller. The controller has a model-based portion and a servo-based portion. The model-based portion cancels all the nonlinearities caused by the nonlinear damper and spring. Therefore, the system as seen by the servo-based portion is linear, which can then be controlled using a linear PID controller. The controller is conceptually simple but exhibited superior tracking capability.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Fuzzy logic control of a pneumatic muscle system using a linearing control scheme\",\"authors\":\"K. Balasubramanian, K. Rattan\",\"doi\":\"10.1109/NAFIPS.2003.1226823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linearizing control scheme for a highly nonlinear pneumatic muscle (PM) system is presented in this paper. Linearizing controllers have been widely used in the control of robotic systems. Since PM is a highly nonlinear system, the concept of linearizing control can be extended to the control of these muscles. Pneumatic muscle has air pressure as its input and the output is a displacement of the muscle. The system is considered to be a mass-spring-damper system with a nonlinear damper and a spring. This nonlinearity makes the design of a mathematical controller more difficult. The scheme presented in this paper uses fuzzy logic to implement the controller. The controller has a model-based portion and a servo-based portion. The model-based portion cancels all the nonlinearities caused by the nonlinear damper and spring. Therefore, the system as seen by the servo-based portion is linear, which can then be controlled using a linear PID controller. The controller is conceptually simple but exhibited superior tracking capability.\",\"PeriodicalId\":153530,\"journal\":{\"name\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2003.1226823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy logic control of a pneumatic muscle system using a linearing control scheme
A linearizing control scheme for a highly nonlinear pneumatic muscle (PM) system is presented in this paper. Linearizing controllers have been widely used in the control of robotic systems. Since PM is a highly nonlinear system, the concept of linearizing control can be extended to the control of these muscles. Pneumatic muscle has air pressure as its input and the output is a displacement of the muscle. The system is considered to be a mass-spring-damper system with a nonlinear damper and a spring. This nonlinearity makes the design of a mathematical controller more difficult. The scheme presented in this paper uses fuzzy logic to implement the controller. The controller has a model-based portion and a servo-based portion. The model-based portion cancels all the nonlinearities caused by the nonlinear damper and spring. Therefore, the system as seen by the servo-based portion is linear, which can then be controlled using a linear PID controller. The controller is conceptually simple but exhibited superior tracking capability.