{"title":"中性原子的磁捕获","authors":"T. Bergeman, H. Metcalf","doi":"10.1063/1.36786","DOIUrl":null,"url":null,"abstract":"Magnetic trapping of laser-cooled neutral atoms has been demonstrated at NBS and is progressing in other laboratories. Confinement of any object requires exchanging kinetic for potential energy, and for neutral atoms, this necessarily derives from shifts of internal energy levels. This is implemented through the force experienced by the atomic magnetic moment in a carefully designed, highly inhomogeneous field. Since magnetic fields of convenient strength can shift atomic energy levels by only a few gigahertz (temperature ≌ 0.1 K), neutral atom traps are very shallow and must be loaded with very cold atoms. We present some motivations for using magnetic traps and then discuss the constraints and optimal configurations of various arrangements. For example, no trap can be isotropic. Next we discuss both the classical and quantum mechanical motions of trapped atoms. These motions are important for at least two reasons: First, several schemes under study for further cooling depend on knowing the position and velocity of the atoms, as well as the vector field at each point along the orbit. Second, magnetic traps depend on the atomic moment remaining aligned with the field as the atom orbits in the trap, and this precludes rapid motion through a low-field region.","PeriodicalId":422579,"journal":{"name":"International Laser Science Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetic trapping of neutral atoms\",\"authors\":\"T. Bergeman, H. Metcalf\",\"doi\":\"10.1063/1.36786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic trapping of laser-cooled neutral atoms has been demonstrated at NBS and is progressing in other laboratories. Confinement of any object requires exchanging kinetic for potential energy, and for neutral atoms, this necessarily derives from shifts of internal energy levels. This is implemented through the force experienced by the atomic magnetic moment in a carefully designed, highly inhomogeneous field. Since magnetic fields of convenient strength can shift atomic energy levels by only a few gigahertz (temperature ≌ 0.1 K), neutral atom traps are very shallow and must be loaded with very cold atoms. We present some motivations for using magnetic traps and then discuss the constraints and optimal configurations of various arrangements. For example, no trap can be isotropic. Next we discuss both the classical and quantum mechanical motions of trapped atoms. These motions are important for at least two reasons: First, several schemes under study for further cooling depend on knowing the position and velocity of the atoms, as well as the vector field at each point along the orbit. Second, magnetic traps depend on the atomic moment remaining aligned with the field as the atom orbits in the trap, and this precludes rapid motion through a low-field region.\",\"PeriodicalId\":422579,\"journal\":{\"name\":\"International Laser Science Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Laser Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.36786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Laser Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.36786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic trapping of laser-cooled neutral atoms has been demonstrated at NBS and is progressing in other laboratories. Confinement of any object requires exchanging kinetic for potential energy, and for neutral atoms, this necessarily derives from shifts of internal energy levels. This is implemented through the force experienced by the atomic magnetic moment in a carefully designed, highly inhomogeneous field. Since magnetic fields of convenient strength can shift atomic energy levels by only a few gigahertz (temperature ≌ 0.1 K), neutral atom traps are very shallow and must be loaded with very cold atoms. We present some motivations for using magnetic traps and then discuss the constraints and optimal configurations of various arrangements. For example, no trap can be isotropic. Next we discuss both the classical and quantum mechanical motions of trapped atoms. These motions are important for at least two reasons: First, several schemes under study for further cooling depend on knowing the position and velocity of the atoms, as well as the vector field at each point along the orbit. Second, magnetic traps depend on the atomic moment remaining aligned with the field as the atom orbits in the trap, and this precludes rapid motion through a low-field region.