使用交互式云的剩余资源加速批处理分析

R. Clay, Zhiming Shen, Xiaosong Ma
{"title":"使用交互式云的剩余资源加速批处理分析","authors":"R. Clay, Zhiming Shen, Xiaosong Ma","doi":"10.1109/MASCOTS.2013.63","DOIUrl":null,"url":null,"abstract":"The popularity of cloud-based interactive computing services (e.g., virtual desktops) brings new management challenges. Each interactive user leaves abundant but fluctuating residual resources while being intolerant to latency, precluding the use of aggressive VM consolidation. In this paper, we present the Resource Harvester for Interactive Clouds (RHIC), an autonomous management framework that harnesses dynamic residual resources aggressively without slowing the harvested interactive services. RHIC builds ad-hoc clusters for running throughput-oriented \"background\" workloads using a hybrid of residual and dedicated resources. These hybrid clusters offer significant gains over normal dedicated clusters: 20-40% cost and 20-29% energy savings in our test bed. For a given background job, RHIC intelligently discovers and maintains the ideal cluster size and composition, to meet user-specified goals such as cost/energy minimization or deadlines. RHIC employs black-box workload performance modeling, requiring only system-level metrics and incorporating techniques to improve modeling accuracy with bursty and heterogeneous residual resources. We demonstrate the effectiveness and adaptivity of our RHIC prototype with two parallel data analytics frameworks, Hadoop and HBase. Our results show that RHIC finds near-ideal cluster sizes and compositions across a wide range of workload/goal combinations.","PeriodicalId":385538,"journal":{"name":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Accelerating Batch Analytics with Residual Resources from Interactive Clouds\",\"authors\":\"R. Clay, Zhiming Shen, Xiaosong Ma\",\"doi\":\"10.1109/MASCOTS.2013.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of cloud-based interactive computing services (e.g., virtual desktops) brings new management challenges. Each interactive user leaves abundant but fluctuating residual resources while being intolerant to latency, precluding the use of aggressive VM consolidation. In this paper, we present the Resource Harvester for Interactive Clouds (RHIC), an autonomous management framework that harnesses dynamic residual resources aggressively without slowing the harvested interactive services. RHIC builds ad-hoc clusters for running throughput-oriented \\\"background\\\" workloads using a hybrid of residual and dedicated resources. These hybrid clusters offer significant gains over normal dedicated clusters: 20-40% cost and 20-29% energy savings in our test bed. For a given background job, RHIC intelligently discovers and maintains the ideal cluster size and composition, to meet user-specified goals such as cost/energy minimization or deadlines. RHIC employs black-box workload performance modeling, requiring only system-level metrics and incorporating techniques to improve modeling accuracy with bursty and heterogeneous residual resources. We demonstrate the effectiveness and adaptivity of our RHIC prototype with two parallel data analytics frameworks, Hadoop and HBase. Our results show that RHIC finds near-ideal cluster sizes and compositions across a wide range of workload/goal combinations.\",\"PeriodicalId\":385538,\"journal\":{\"name\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS.2013.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2013.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

基于云的交互式计算服务(例如,虚拟桌面)的流行带来了新的管理挑战。每个交互用户留下丰富但波动的剩余资源,同时不容忍延迟,从而排除了积极的VM整合的使用。在本文中,我们介绍了用于交互云的资源收集器(RHIC),这是一个自治的管理框架,可以积极地利用动态剩余资源,而不会减慢收集的交互服务的速度。RHIC使用剩余资源和专用资源的混合,构建用于运行面向吞吐量的“后台”工作负载的临时集群。在我们的测试平台上,这些混合集群比普通的专用集群有显著的收益:成本节省20-40%,能源节省20-29%。对于给定的后台作业,RHIC智能地发现并维护理想的簇大小和组成,以满足用户指定的目标,如成本/能源最小化或截止日期。RHIC采用黑盒工作负载性能建模,只需要系统级度量,并结合技术来提高突发和异构剩余资源的建模精度。我们用两个并行数据分析框架Hadoop和HBase演示了RHIC原型的有效性和适应性。我们的结果表明,RHIC在广泛的工作负载/目标组合中找到了接近理想的集群大小和组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Batch Analytics with Residual Resources from Interactive Clouds
The popularity of cloud-based interactive computing services (e.g., virtual desktops) brings new management challenges. Each interactive user leaves abundant but fluctuating residual resources while being intolerant to latency, precluding the use of aggressive VM consolidation. In this paper, we present the Resource Harvester for Interactive Clouds (RHIC), an autonomous management framework that harnesses dynamic residual resources aggressively without slowing the harvested interactive services. RHIC builds ad-hoc clusters for running throughput-oriented "background" workloads using a hybrid of residual and dedicated resources. These hybrid clusters offer significant gains over normal dedicated clusters: 20-40% cost and 20-29% energy savings in our test bed. For a given background job, RHIC intelligently discovers and maintains the ideal cluster size and composition, to meet user-specified goals such as cost/energy minimization or deadlines. RHIC employs black-box workload performance modeling, requiring only system-level metrics and incorporating techniques to improve modeling accuracy with bursty and heterogeneous residual resources. We demonstrate the effectiveness and adaptivity of our RHIC prototype with two parallel data analytics frameworks, Hadoop and HBase. Our results show that RHIC finds near-ideal cluster sizes and compositions across a wide range of workload/goal combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Modeling Low-Power Wireless Protocols Based on Synchronous Packet Transmissions Analysis of a Simple Approach to Modeling Performance for Streaming Data Applications On the Accuracy of Trace Replay Methods for File System Evaluation A Fix-and-Relax Model for Heterogeneous LTE-Based Networks Making JavaScript Better by Making It Even Slower
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1