Courier:在异构FaaS部署中交付无服务器功能

Anshul Jindal, Julian Frielinghaus, Mohak Chadha, M. Gerndt
{"title":"Courier:在异构FaaS部署中交付无服务器功能","authors":"Anshul Jindal, Julian Frielinghaus, Mohak Chadha, M. Gerndt","doi":"10.1145/3468737.3494097","DOIUrl":null,"url":null,"abstract":"With the advent of serverless computing in different domains, there is a growing need for dynamic adaption to handle diverse and heterogeneous functions. However, serverless computing is currently limited to homogeneous Function-as-a-Service (FaaS) deployments or simply FaaS Deployment (FaaSD) consisting of deployments of serverless functions using a FaaS platform in a region with certain memory configurations. Extending serverless computing to support Heterogeneous FaaS Deployments (HeteroFaaSDs) consisting of multiple FaaSDs with variable configurations (FaaS platform, region, and memory) and dynamically load balancing the invocations of the functions across these FaaSDs within a HeteroFaaSD can provide an optimal way for handling such serverless functions. In this paper, we present a software system called Courier that is responsible for optimally distributing the invocations of the functions (called delivering of serverless functions) within the HeteroFaaSDs based on the execution time of the functions on the FaaSDs comprising the HeteroFaaSDs. To this end, we developed two approaches: Auto Weighted Round-Robin (AWRR) and PerFunction Auto Weighted Round-Robin (PFAWRR) that use functions execution times for delivering serverless functions within a HeteroFaaSD to reduce the overall execution time. We demonstrate and evaluate the functioning of our developed tool on three HeteroFaaSDs using three FaaS platforms: 1) on-premise Open-Whisk, 2) AWS Lambda, and 3) Google Cloud Functions (GCF). We show that Courier can improve the overall performance of the invocations of the functions within a HeteroFaaSD as compared to traditional load balancing algorithms.","PeriodicalId":254382,"journal":{"name":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"144 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Courier: delivering serverless functions within heterogeneous FaaS deployments\",\"authors\":\"Anshul Jindal, Julian Frielinghaus, Mohak Chadha, M. Gerndt\",\"doi\":\"10.1145/3468737.3494097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of serverless computing in different domains, there is a growing need for dynamic adaption to handle diverse and heterogeneous functions. However, serverless computing is currently limited to homogeneous Function-as-a-Service (FaaS) deployments or simply FaaS Deployment (FaaSD) consisting of deployments of serverless functions using a FaaS platform in a region with certain memory configurations. Extending serverless computing to support Heterogeneous FaaS Deployments (HeteroFaaSDs) consisting of multiple FaaSDs with variable configurations (FaaS platform, region, and memory) and dynamically load balancing the invocations of the functions across these FaaSDs within a HeteroFaaSD can provide an optimal way for handling such serverless functions. In this paper, we present a software system called Courier that is responsible for optimally distributing the invocations of the functions (called delivering of serverless functions) within the HeteroFaaSDs based on the execution time of the functions on the FaaSDs comprising the HeteroFaaSDs. To this end, we developed two approaches: Auto Weighted Round-Robin (AWRR) and PerFunction Auto Weighted Round-Robin (PFAWRR) that use functions execution times for delivering serverless functions within a HeteroFaaSD to reduce the overall execution time. We demonstrate and evaluate the functioning of our developed tool on three HeteroFaaSDs using three FaaS platforms: 1) on-premise Open-Whisk, 2) AWS Lambda, and 3) Google Cloud Functions (GCF). We show that Courier can improve the overall performance of the invocations of the functions within a HeteroFaaSD as compared to traditional load balancing algorithms.\",\"PeriodicalId\":254382,\"journal\":{\"name\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"volume\":\"144 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468737.3494097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468737.3494097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着无服务器计算在不同领域的出现,越来越需要动态适应来处理各种异构功能。然而,无服务器计算目前仅限于同构的功能即服务(FaaS)部署或简单的FaaS部署(FaaSD),包括在具有特定内存配置的区域中使用FaaS平台部署无服务器功能。扩展无服务器计算以支持异构FaaS部署(HeteroFaaSD),异构FaaS部署由多个faasd组成,具有可变配置(FaaS平台、区域和内存),并在HeteroFaaSD内跨这些faasd动态负载平衡功能调用,可以为处理此类无服务器功能提供最佳方式。在本文中,我们提出了一个名为Courier的软件系统,该系统负责根据组成heterofaasd的faasd上的函数执行时间,在heterofaasd内优化分布函数调用(称为无服务器功能交付)。为此,我们开发了两种方法:自动加权轮询(AWRR)和PerFunction自动加权轮询(PFAWRR),它们使用函数执行时间在HeteroFaaSD中交付无服务器功能,以减少总体执行时间。我们使用三个FaaS平台在三个heterofaasd上演示和评估了我们开发的工具的功能:1)本地Open-Whisk, 2) AWS Lambda和3)谷歌Cloud Functions (GCF)。我们表明,与传统的负载平衡算法相比,Courier可以提高HeteroFaaSD中函数调用的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Courier: delivering serverless functions within heterogeneous FaaS deployments
With the advent of serverless computing in different domains, there is a growing need for dynamic adaption to handle diverse and heterogeneous functions. However, serverless computing is currently limited to homogeneous Function-as-a-Service (FaaS) deployments or simply FaaS Deployment (FaaSD) consisting of deployments of serverless functions using a FaaS platform in a region with certain memory configurations. Extending serverless computing to support Heterogeneous FaaS Deployments (HeteroFaaSDs) consisting of multiple FaaSDs with variable configurations (FaaS platform, region, and memory) and dynamically load balancing the invocations of the functions across these FaaSDs within a HeteroFaaSD can provide an optimal way for handling such serverless functions. In this paper, we present a software system called Courier that is responsible for optimally distributing the invocations of the functions (called delivering of serverless functions) within the HeteroFaaSDs based on the execution time of the functions on the FaaSDs comprising the HeteroFaaSDs. To this end, we developed two approaches: Auto Weighted Round-Robin (AWRR) and PerFunction Auto Weighted Round-Robin (PFAWRR) that use functions execution times for delivering serverless functions within a HeteroFaaSD to reduce the overall execution time. We demonstrate and evaluate the functioning of our developed tool on three HeteroFaaSDs using three FaaS platforms: 1) on-premise Open-Whisk, 2) AWS Lambda, and 3) Google Cloud Functions (GCF). We show that Courier can improve the overall performance of the invocations of the functions within a HeteroFaaSD as compared to traditional load balancing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed federated service chaining for heterogeneous network environments Accord RDS Leveraging vCPU-utilization rates to select cost-efficient VMs for parallel workloads Multi-cloud serverless function composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1