如何处理医学成像机器学习中的不确定性?

C. Gillmann, D. Saur, G. Scheuermann
{"title":"如何处理医学成像机器学习中的不确定性?","authors":"C. Gillmann, D. Saur, G. Scheuermann","doi":"10.1109/TREX53765.2021.00014","DOIUrl":null,"url":null,"abstract":"Recently, machine learning is massively on the rise in medical applications providing the ability to predict diseases, plan treatment and monitor progress. Still, the use in a clinical context of this technology is rather rare, mostly due to the missing trust of clinicians. In this position paper, we aim to show how uncertainty is introduced in the machine learning process when applying it to medical imaging at multiple points and how this influences the decision-making process of clinicians in machine learning approaches. Based on this knowledge, we aim to refine the guidelines for trust in visual analytics to assist clinicians in using and understanding systems that are based on machine learning.","PeriodicalId":345585,"journal":{"name":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"How to deal with Uncertainty in Machine Learning for Medical Imaging?\",\"authors\":\"C. Gillmann, D. Saur, G. Scheuermann\",\"doi\":\"10.1109/TREX53765.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, machine learning is massively on the rise in medical applications providing the ability to predict diseases, plan treatment and monitor progress. Still, the use in a clinical context of this technology is rather rare, mostly due to the missing trust of clinicians. In this position paper, we aim to show how uncertainty is introduced in the machine learning process when applying it to medical imaging at multiple points and how this influences the decision-making process of clinicians in machine learning approaches. Based on this knowledge, we aim to refine the guidelines for trust in visual analytics to assist clinicians in using and understanding systems that are based on machine learning.\",\"PeriodicalId\":345585,\"journal\":{\"name\":\"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TREX53765.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TREX53765.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近,机器学习在医疗应用中的应用正在大量增加,它提供了预测疾病、计划治疗和监测进展的能力。尽管如此,在临床环境中使用这种技术是相当罕见的,主要是由于缺乏信任的临床医生。在这篇立场文件中,我们的目标是展示在将机器学习应用于多点医学成像时,机器学习过程中如何引入不确定性,以及这如何影响临床医生在机器学习方法中的决策过程。基于这些知识,我们的目标是完善视觉分析中的信任指南,以帮助临床医生使用和理解基于机器学习的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to deal with Uncertainty in Machine Learning for Medical Imaging?
Recently, machine learning is massively on the rise in medical applications providing the ability to predict diseases, plan treatment and monitor progress. Still, the use in a clinical context of this technology is rather rare, mostly due to the missing trust of clinicians. In this position paper, we aim to show how uncertainty is introduced in the machine learning process when applying it to medical imaging at multiple points and how this influences the decision-making process of clinicians in machine learning approaches. Based on this knowledge, we aim to refine the guidelines for trust in visual analytics to assist clinicians in using and understanding systems that are based on machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Should I Follow this Model? The Effect of Uncertainty Visualization on the Acceptance of Time Series Forecasts Making and Trusting Decisions in Visual Analytics A Case Study of Using Analytic Provenance to Reconstruct User Trust in a Guided Visual Analytics System Evaluating Forecasting, Knowledge, and Visual Analytics How to deal with Uncertainty in Machine Learning for Medical Imaging?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1