了解钻井作业中已有裂缝网络中热孔弹性机械应力引起的损伤

Mostafa Gomar, B. Elahifar
{"title":"了解钻井作业中已有裂缝网络中热孔弹性机械应力引起的损伤","authors":"Mostafa Gomar, B. Elahifar","doi":"10.2118/209837-ms","DOIUrl":null,"url":null,"abstract":"\n In drilling the reservoir sections of a well, one of the most challenging issues is reducing damage to the reservoir by controlling downhole pressure. Many drilling techniques such as underbalanced drilling (UBD) and managed pressure drilling (MPD) are employed to minimize the risks associated with drilling as well as to minimize damage to the porous rock. Even though chemical and physical damages may be short-term and could be repaired by some stimulation techniques, the long-term effects of mechanical damages in porous and fractured reservoirs have received insufficient attention. Accordingly, not only could the above drilling techniques be applied to solve downhole drilling problems, but they also may be used to reduce induced mechanical damages in fractured rocks.\n This article presents a new method for modeling changes in fracture permeability caused by drilling in fractured rocks. As part of the approach, the finite element method (FEM) is employed to conduct a thermo-poroelastic analysis of stress distributions around the borehole and the displacement discontinuity method (DDM) is used to model fracture deformations. Based on different fracture spacings and fracture inclination angles, we have considered models of regular fracture networks in the present study. This study focuses on the differences in permeability in underbalanced and overbalanced drilling operations that are compared together in different models.\n Effective stress differences (over 40 MPa) were found along and around borehole periphery. Shear stresses in the oblique fracture network also governed aperture change. Short-term mechanical stresses and long-term thermal and fluid pressures determine the fracture aperture. In the long run, fluid pressure and thermal stresses contribute to long term permeability change of fractures while mechanical stresses cause a short-term change. Underbalanced drilling was simulated to reduce fracture permeability, while cooling and pressurizing of rock encouraged fracture permeability without considering solid particle plugging. Fracture aperture adopts a seesaw pattern in a small-spaced fracture network. When the fracture aperture increases in a fracture, the neighboring fractures experience decreased apertures. Despite the drilling method, fractures intersecting boreholes have reduced permeability after drilling for a long time, as they choked in a few locations along the fracture length.\n At present, the industry considers managed pressure and underbalanced drilling to be the priority for resolving drilling problems. This paper investigates stress-induced damages in fractured rocks under overbalanced and underbalanced drilling conditions. It is also of significant interest in geothermal reservoirs, where the temperature difference between the rock and the well bore fluid is large. Furthermore, such an analysis would provide the optimal well location from a geomechanical and reservoir engineering standpoint.","PeriodicalId":226577,"journal":{"name":"Day 2 Wed, August 10, 2022","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Thermo-Poroelastic Mechanical Stress Induced Damages in Network of Pre-Existing Fractures During Drilling Operation\",\"authors\":\"Mostafa Gomar, B. Elahifar\",\"doi\":\"10.2118/209837-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In drilling the reservoir sections of a well, one of the most challenging issues is reducing damage to the reservoir by controlling downhole pressure. Many drilling techniques such as underbalanced drilling (UBD) and managed pressure drilling (MPD) are employed to minimize the risks associated with drilling as well as to minimize damage to the porous rock. Even though chemical and physical damages may be short-term and could be repaired by some stimulation techniques, the long-term effects of mechanical damages in porous and fractured reservoirs have received insufficient attention. Accordingly, not only could the above drilling techniques be applied to solve downhole drilling problems, but they also may be used to reduce induced mechanical damages in fractured rocks.\\n This article presents a new method for modeling changes in fracture permeability caused by drilling in fractured rocks. As part of the approach, the finite element method (FEM) is employed to conduct a thermo-poroelastic analysis of stress distributions around the borehole and the displacement discontinuity method (DDM) is used to model fracture deformations. Based on different fracture spacings and fracture inclination angles, we have considered models of regular fracture networks in the present study. This study focuses on the differences in permeability in underbalanced and overbalanced drilling operations that are compared together in different models.\\n Effective stress differences (over 40 MPa) were found along and around borehole periphery. Shear stresses in the oblique fracture network also governed aperture change. Short-term mechanical stresses and long-term thermal and fluid pressures determine the fracture aperture. In the long run, fluid pressure and thermal stresses contribute to long term permeability change of fractures while mechanical stresses cause a short-term change. Underbalanced drilling was simulated to reduce fracture permeability, while cooling and pressurizing of rock encouraged fracture permeability without considering solid particle plugging. Fracture aperture adopts a seesaw pattern in a small-spaced fracture network. When the fracture aperture increases in a fracture, the neighboring fractures experience decreased apertures. Despite the drilling method, fractures intersecting boreholes have reduced permeability after drilling for a long time, as they choked in a few locations along the fracture length.\\n At present, the industry considers managed pressure and underbalanced drilling to be the priority for resolving drilling problems. This paper investigates stress-induced damages in fractured rocks under overbalanced and underbalanced drilling conditions. It is also of significant interest in geothermal reservoirs, where the temperature difference between the rock and the well bore fluid is large. Furthermore, such an analysis would provide the optimal well location from a geomechanical and reservoir engineering standpoint.\",\"PeriodicalId\":226577,\"journal\":{\"name\":\"Day 2 Wed, August 10, 2022\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, August 10, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209837-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, August 10, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209837-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在井的储层段钻井中,最具挑战性的问题之一是通过控制井下压力来减少对储层的损害。许多钻井技术,如欠平衡钻井(UBD)和控压钻井(MPD),都是为了将钻井相关的风险降到最低,并将对多孔岩石的破坏降到最低。尽管化学和物理损伤可能是短期的,并且可以通过一些增产技术进行修复,但在多孔和裂缝性储层中,机械损伤的长期影响尚未得到足够的重视。因此,上述钻井技术不仅可用于解决井下钻井问题,还可用于减少裂隙岩石的诱发力学损伤。本文提出了一种模拟裂缝性岩石钻井引起的裂缝渗透率变化的新方法。作为该方法的一部分,采用有限元法(FEM)对井眼周围的应力分布进行热孔弹性分析,并采用位移不连续法(DDM)对裂缝变形进行建模。基于不同的裂缝间距和裂缝倾角,我们在本研究中考虑了规则裂缝网络模型。本研究重点研究了欠平衡和过平衡钻井作业中渗透率的差异,并在不同模型中进行了比较。沿井周及井周有效应力差大于40 MPa。斜向裂缝网络中的剪切应力也控制着裂缝孔径的变化。短期的机械应力和长期的热压力和流体压力决定了裂缝的孔径。从长期来看,流体压力和热应力影响裂缝渗透率的长期变化,而机械应力影响裂缝渗透率的短期变化。模拟欠平衡钻井降低了裂缝渗透率,而在不考虑固体颗粒堵塞的情况下,岩石的冷却和加压提高了裂缝渗透率。裂缝孔径在小间距裂缝网络中呈跷跷板状分布。当一条裂缝的裂缝孔径增大时,相邻裂缝的裂缝孔径减小。尽管采用了钻井方法,但在长时间的钻井后,井眼相交的裂缝会导致渗透率降低,因为沿裂缝长度的一些位置会出现堵塞。目前,业界认为控制压力和欠平衡钻井是解决钻井问题的首要任务。研究了过平衡和欠平衡钻井条件下裂隙岩石的应力损伤。在地热储层中,岩石和井下流体之间的温差很大,这也引起了人们的极大兴趣。此外,从地质力学和油藏工程的角度来看,这种分析可以提供最佳的井位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Thermo-Poroelastic Mechanical Stress Induced Damages in Network of Pre-Existing Fractures During Drilling Operation
In drilling the reservoir sections of a well, one of the most challenging issues is reducing damage to the reservoir by controlling downhole pressure. Many drilling techniques such as underbalanced drilling (UBD) and managed pressure drilling (MPD) are employed to minimize the risks associated with drilling as well as to minimize damage to the porous rock. Even though chemical and physical damages may be short-term and could be repaired by some stimulation techniques, the long-term effects of mechanical damages in porous and fractured reservoirs have received insufficient attention. Accordingly, not only could the above drilling techniques be applied to solve downhole drilling problems, but they also may be used to reduce induced mechanical damages in fractured rocks. This article presents a new method for modeling changes in fracture permeability caused by drilling in fractured rocks. As part of the approach, the finite element method (FEM) is employed to conduct a thermo-poroelastic analysis of stress distributions around the borehole and the displacement discontinuity method (DDM) is used to model fracture deformations. Based on different fracture spacings and fracture inclination angles, we have considered models of regular fracture networks in the present study. This study focuses on the differences in permeability in underbalanced and overbalanced drilling operations that are compared together in different models. Effective stress differences (over 40 MPa) were found along and around borehole periphery. Shear stresses in the oblique fracture network also governed aperture change. Short-term mechanical stresses and long-term thermal and fluid pressures determine the fracture aperture. In the long run, fluid pressure and thermal stresses contribute to long term permeability change of fractures while mechanical stresses cause a short-term change. Underbalanced drilling was simulated to reduce fracture permeability, while cooling and pressurizing of rock encouraged fracture permeability without considering solid particle plugging. Fracture aperture adopts a seesaw pattern in a small-spaced fracture network. When the fracture aperture increases in a fracture, the neighboring fractures experience decreased apertures. Despite the drilling method, fractures intersecting boreholes have reduced permeability after drilling for a long time, as they choked in a few locations along the fracture length. At present, the industry considers managed pressure and underbalanced drilling to be the priority for resolving drilling problems. This paper investigates stress-induced damages in fractured rocks under overbalanced and underbalanced drilling conditions. It is also of significant interest in geothermal reservoirs, where the temperature difference between the rock and the well bore fluid is large. Furthermore, such an analysis would provide the optimal well location from a geomechanical and reservoir engineering standpoint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Fracture Network Swept Volume Prediction Approach for Multi-Fractured Horizontal Wells in Shale Oil Reservoirs A Case Study on the Use of Machine Learning and Data Analytics to Improve Rig Operational Efficiency and Equipment Performance Cable Deployed ESP System Applied with Conventional ESP Assembly: A New Generation of Rigless ESP Technology Successfully Application of RPM in Sand Control Treatments for Offshore Field: Challenges, Results and Improvements Deploying Dynamic Trend-Based Monitoring System to Deliver Real Time Drilling Decision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1