{"title":"基于m级晶闸管的MLCR CSC的比较研究","authors":"B. Das, N. Watson, Y. Liu","doi":"10.1109/POWERCON.2012.6401300","DOIUrl":null,"url":null,"abstract":"Multi-level Current Reinjection (MLCR) concept adds self commutation capability to thyristors, and produces a high quality line current waveforms and provides reactive power compensation in current source converters (CSC). Multi-level conversion is applied to generate the required optimum linear multilevel injection current which, when reinjected to the ac side, reduces the line current total harmonic distortion (THD) and forces the thyristor current to be zero. In this paper a comparative study is carried out for a 3-level, 5-level, and 7-level thyristor based MLCR CSC in terms of line current THD obtained, reinjection transformer requirements, reinjection switch ratings, and reinjection control circuitry complexities. Extensive PSCAD/EMTDC simulations are presented for comparing the different m-level reinjection schemes.","PeriodicalId":176214,"journal":{"name":"2012 IEEE International Conference on Power System Technology (POWERCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"m-level thyristor based MLCR CSC: A comparative study\",\"authors\":\"B. Das, N. Watson, Y. Liu\",\"doi\":\"10.1109/POWERCON.2012.6401300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-level Current Reinjection (MLCR) concept adds self commutation capability to thyristors, and produces a high quality line current waveforms and provides reactive power compensation in current source converters (CSC). Multi-level conversion is applied to generate the required optimum linear multilevel injection current which, when reinjected to the ac side, reduces the line current total harmonic distortion (THD) and forces the thyristor current to be zero. In this paper a comparative study is carried out for a 3-level, 5-level, and 7-level thyristor based MLCR CSC in terms of line current THD obtained, reinjection transformer requirements, reinjection switch ratings, and reinjection control circuitry complexities. Extensive PSCAD/EMTDC simulations are presented for comparing the different m-level reinjection schemes.\",\"PeriodicalId\":176214,\"journal\":{\"name\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2012.6401300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2012.6401300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
m-level thyristor based MLCR CSC: A comparative study
Multi-level Current Reinjection (MLCR) concept adds self commutation capability to thyristors, and produces a high quality line current waveforms and provides reactive power compensation in current source converters (CSC). Multi-level conversion is applied to generate the required optimum linear multilevel injection current which, when reinjected to the ac side, reduces the line current total harmonic distortion (THD) and forces the thyristor current to be zero. In this paper a comparative study is carried out for a 3-level, 5-level, and 7-level thyristor based MLCR CSC in terms of line current THD obtained, reinjection transformer requirements, reinjection switch ratings, and reinjection control circuitry complexities. Extensive PSCAD/EMTDC simulations are presented for comparing the different m-level reinjection schemes.