电动汽车充电在线山谷填充算法中的填充水平预测

Martijn H. H. Schoot Uiterkamp, Marco E. T. Gerards, J. Hurink
{"title":"电动汽车充电在线山谷填充算法中的填充水平预测","authors":"Martijn H. H. Schoot Uiterkamp, Marco E. T. Gerards, J. Hurink","doi":"10.1109/ISGTEurope.2018.8571605","DOIUrl":null,"url":null,"abstract":"Due to the large increase in electric vehicles (EVs), smart charging strategies are required in order for the distribution grid to accommodate all these EVs. Many charging strategies either assume that future loads are known in advance, or use predictions of these loads as input. However, accurate prediction of uncontrollable load is very difficult. Online valley-filling algorithms circumvent this problem by determining the charging profile based on a prediction of the fill-level: a single parameter that characterizes the optimal EV schedule. This paper presents a simple, but accurate, method to predict this fill-level. We show that near-optimal charging profiles with an optimality gap of less than 1 % can be realized when our method is used to predict the input level for the online valley-filling approach. Furthermore, our method is very fast and thus suitable for use in decentralized energy management systems that employ the online valley- filling approach.","PeriodicalId":302863,"journal":{"name":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fill-level prediction in online valley-filling algorithms for electric vehicle charging\",\"authors\":\"Martijn H. H. Schoot Uiterkamp, Marco E. T. Gerards, J. Hurink\",\"doi\":\"10.1109/ISGTEurope.2018.8571605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the large increase in electric vehicles (EVs), smart charging strategies are required in order for the distribution grid to accommodate all these EVs. Many charging strategies either assume that future loads are known in advance, or use predictions of these loads as input. However, accurate prediction of uncontrollable load is very difficult. Online valley-filling algorithms circumvent this problem by determining the charging profile based on a prediction of the fill-level: a single parameter that characterizes the optimal EV schedule. This paper presents a simple, but accurate, method to predict this fill-level. We show that near-optimal charging profiles with an optimality gap of less than 1 % can be realized when our method is used to predict the input level for the online valley-filling approach. Furthermore, our method is very fast and thus suitable for use in decentralized energy management systems that employ the online valley- filling approach.\",\"PeriodicalId\":302863,\"journal\":{\"name\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2018.8571605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2018.8571605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于电动汽车的大量增加,配电网需要智能充电策略来适应所有这些电动汽车。许多充电策略要么假设未来的负荷是事先已知的,要么使用这些负荷的预测作为输入。然而,不可控负荷的准确预测是非常困难的。在线山谷填充算法通过基于填充水平的预测来确定充电轮廓,从而避免了这一问题:填充水平是表征最优电动汽车计划的单个参数。本文提出了一种简单而准确的方法来预测这种充填水平。我们发现,当我们的方法用于预测在线山谷填充方法的输入电平时,可以实现最优性差距小于1%的近最优充电曲线。此外,我们的方法非常快,因此适用于采用在线山谷填充方法的分散能源管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fill-level prediction in online valley-filling algorithms for electric vehicle charging
Due to the large increase in electric vehicles (EVs), smart charging strategies are required in order for the distribution grid to accommodate all these EVs. Many charging strategies either assume that future loads are known in advance, or use predictions of these loads as input. However, accurate prediction of uncontrollable load is very difficult. Online valley-filling algorithms circumvent this problem by determining the charging profile based on a prediction of the fill-level: a single parameter that characterizes the optimal EV schedule. This paper presents a simple, but accurate, method to predict this fill-level. We show that near-optimal charging profiles with an optimality gap of less than 1 % can be realized when our method is used to predict the input level for the online valley-filling approach. Furthermore, our method is very fast and thus suitable for use in decentralized energy management systems that employ the online valley- filling approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Identification of HVAC Systems for Office Buildings Considering Real Environment Provision of Frequency-Containment-Reserve by Electric Vehicles: Impact of Technical Requirements Preference Analyses of Residential Appliances in Demand Response: A Novel Perspective Based on Behavioral Economics Research of TRBVT Regulation Characteristics Day-Ahead Optimal Reserve Capacity Planning Based on Stochastic RE and DR Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1