结合PCA和现有降噪方法对高光谱图像进行降噪

Guangyi Chen, A. Krzyżak
{"title":"结合PCA和现有降噪方法对高光谱图像进行降噪","authors":"Guangyi Chen, A. Krzyżak","doi":"10.1142/s0219691321500284","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the effects of principal component analysis (PCA) on hyperspectral imagery denoising. Our previous work combined PCA with wavelet shrinkage and particularly good denoising results has been achieved. We debate that any denoising methods can be used to replace wavelet shrinkage in our PCA+wavelet shrinkage algorithm. The major difference between this work and our previous PCA-based denoising method is that we consider a mixture of Gaussian and shot noise in this work whereas our previous methods studied Gaussian white noise alone. In addition, we retain [Formula: see text] [Formula: see text] PCA output components in our forward PCA transform in this paper whereas we keep all PCA output components [Formula: see text] in our previous works. The [Formula: see text] above is the number of spectral bands in the original hyperspectral imagery data cube. In addition, PCA is much better than nonlinear PCA for hyperspectral imagery denoising when Gaussian white noise and shot noise are introduced as demonstrated in this paper. Extensive experiments demonstrate that the method proposed in this paper outperforms the existing methods significantly in terms of signal-to-noise ratio for two testing hyperspectral imagery data cubes.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction of shot-noise-dominated hyperspectral imagery by combining PCA with existing denoising methods\",\"authors\":\"Guangyi Chen, A. Krzyżak\",\"doi\":\"10.1142/s0219691321500284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the effects of principal component analysis (PCA) on hyperspectral imagery denoising. Our previous work combined PCA with wavelet shrinkage and particularly good denoising results has been achieved. We debate that any denoising methods can be used to replace wavelet shrinkage in our PCA+wavelet shrinkage algorithm. The major difference between this work and our previous PCA-based denoising method is that we consider a mixture of Gaussian and shot noise in this work whereas our previous methods studied Gaussian white noise alone. In addition, we retain [Formula: see text] [Formula: see text] PCA output components in our forward PCA transform in this paper whereas we keep all PCA output components [Formula: see text] in our previous works. The [Formula: see text] above is the number of spectral bands in the original hyperspectral imagery data cube. In addition, PCA is much better than nonlinear PCA for hyperspectral imagery denoising when Gaussian white noise and shot noise are introduced as demonstrated in this paper. Extensive experiments demonstrate that the method proposed in this paper outperforms the existing methods significantly in terms of signal-to-noise ratio for two testing hyperspectral imagery data cubes.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了主成分分析(PCA)在高光谱图像去噪中的作用。我们之前的工作将PCA与小波收缩相结合,取得了特别好的去噪效果。在我们的PCA+小波收缩算法中,我们讨论了任何去噪方法都可以用来取代小波收缩。这项工作与我们之前基于pca的去噪方法的主要区别在于,我们在这项工作中考虑了高斯和散粒噪声的混合,而我们之前的方法只研究高斯白噪声。此外,在本文的前向PCA变换中,我们保留了[公式:见文][公式:见文]PCA输出分量,而在之前的工作中,我们保留了所有PCA输出分量[公式:见文]。上面[公式:见文]为原始高光谱影像数据立方的光谱带数。此外,当引入高斯白噪声和散粒噪声时,PCA对高光谱图像的去噪效果明显优于非线性PCA。大量实验表明,本文提出的方法在两个测试高光谱图像数据立方体的信噪比方面明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise reduction of shot-noise-dominated hyperspectral imagery by combining PCA with existing denoising methods
In this paper, we revisit the effects of principal component analysis (PCA) on hyperspectral imagery denoising. Our previous work combined PCA with wavelet shrinkage and particularly good denoising results has been achieved. We debate that any denoising methods can be used to replace wavelet shrinkage in our PCA+wavelet shrinkage algorithm. The major difference between this work and our previous PCA-based denoising method is that we consider a mixture of Gaussian and shot noise in this work whereas our previous methods studied Gaussian white noise alone. In addition, we retain [Formula: see text] [Formula: see text] PCA output components in our forward PCA transform in this paper whereas we keep all PCA output components [Formula: see text] in our previous works. The [Formula: see text] above is the number of spectral bands in the original hyperspectral imagery data cube. In addition, PCA is much better than nonlinear PCA for hyperspectral imagery denoising when Gaussian white noise and shot noise are introduced as demonstrated in this paper. Extensive experiments demonstrate that the method proposed in this paper outperforms the existing methods significantly in terms of signal-to-noise ratio for two testing hyperspectral imagery data cubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An aggressive reduction on the complexity of optimization for non-strongly convex objectives A single image super resolution method based on cross residual network and wavelet transform On the computation of extremal trees of Harmonic index with given edge-vertex domination number Phase retrieval from short-time fractional Fourier measurements using alternating direction method of multipliers k-Ambiguity function in the framework of offset linear canonical transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1