{"title":"top-k选择查询的基于抽样的估计器","authors":"Chung-Min Chen, Y. Ling","doi":"10.1109/ICDE.2002.994779","DOIUrl":null,"url":null,"abstract":"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A sampling-based estimator for top-k selection query\",\"authors\":\"Chung-Min Chen, Y. Ling\",\"doi\":\"10.1109/ICDE.2002.994779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sampling-based estimator for top-k selection query
Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.