top-k选择查询的基于抽样的估计器

Chung-Min Chen, Y. Ling
{"title":"top-k选择查询的基于抽样的估计器","authors":"Chung-Min Chen, Y. Ling","doi":"10.1109/ICDE.2002.994779","DOIUrl":null,"url":null,"abstract":"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A sampling-based estimator for top-k selection query\",\"authors\":\"Chung-Min Chen, Y. Ling\",\"doi\":\"10.1109/ICDE.2002.994779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

Top-k查询在许多数据库应用程序中自然出现,这些应用程序需要搜索属性值与查询中指定的值接近的记录。我们通过将top-k查询转换为可由传统关系dbms有效处理的近似范围查询来研究处理top-k查询的问题。我们提出了一种基于抽样的方法,以及各种查询映射策略,以确定以低访问成本产生高召回的范围查询。我们在真实数据集上的实验表明,给定相同的内存预算,我们基于抽样的估计器在访问成本方面优于之前基于直方图的方法,同时达到相同的召回水平。此外,与基于直方图的方法不同,我们的基于抽样的查询映射方案适用于高维数据,并且易于实现,维护成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sampling-based estimator for top-k selection query
Top-k queries arise naturally in many database applications that require searching for records whose attribute values are close to those specified in a query. We study the problem of processing a top-k query by translating it into an approximate range query that can be efficiently processed by traditional relational DBMSs. We propose a sampling-based approach, along with various query mapping strategies, to determine a range query that yields high recall with low access cost. Our experiments on real-world datasets show that, given the same memory budgets, our sampling-based estimator outperforms a previous histogram-based method in terms of access cost, while achieving the same level of recall. Furthermore, unlike the histogram-based approach, our sampling-based query mapping scheme scales well for high dimensional data and is easy to implement with low maintenance cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1