HOIST:用于自动生成嵌入式系统静态分析器的系统

ASPLOS XI Pub Date : 2004-10-07 DOI:10.1145/1024393.1024410
J. Regehr, A. Reid
{"title":"HOIST:用于自动生成嵌入式系统静态分析器的系统","authors":"J. Regehr, A. Reid","doi":"10.1145/1024393.1024410","DOIUrl":null,"url":null,"abstract":"Embedded software must meet conflicting requirements such as be-ing highly reliable, running on resource-constrained platforms, and being developed rapidly. Static program analysis can help meet all of these goals. People developing analyzers for embedded object code face a difficult problem: writing an abstract version of each instruction in the target architecture(s). This is currently done by hand, resulting in abstract operations that are both buggy and im-precise. We have developed Hoist: a novel system that solves these problems by automatically constructing abstract operations using a microprocessor (or simulator) as its own specification. With almost no input from a human, Hoist generates a collection of C func-tions that are ready to be linked into an abstract interpreter. We demonstrate that Hoist generates abstract operations that are cor-rect, having been extensively tested, sufficiently fast, and substan-tially more precise than manually written abstract operations. Hoist is currently limited to eight-bit machines due to costs exponential in the word size of the target architecture. It is essential to be able to analyze software running on these small processors: they are important and ubiquitous, with many embedded and safety-critical systems being based on them.","PeriodicalId":344295,"journal":{"name":"ASPLOS XI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"HOIST: a system for automatically deriving static analyzers for embedded systems\",\"authors\":\"J. Regehr, A. Reid\",\"doi\":\"10.1145/1024393.1024410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded software must meet conflicting requirements such as be-ing highly reliable, running on resource-constrained platforms, and being developed rapidly. Static program analysis can help meet all of these goals. People developing analyzers for embedded object code face a difficult problem: writing an abstract version of each instruction in the target architecture(s). This is currently done by hand, resulting in abstract operations that are both buggy and im-precise. We have developed Hoist: a novel system that solves these problems by automatically constructing abstract operations using a microprocessor (or simulator) as its own specification. With almost no input from a human, Hoist generates a collection of C func-tions that are ready to be linked into an abstract interpreter. We demonstrate that Hoist generates abstract operations that are cor-rect, having been extensively tested, sufficiently fast, and substan-tially more precise than manually written abstract operations. Hoist is currently limited to eight-bit machines due to costs exponential in the word size of the target architecture. It is essential to be able to analyze software running on these small processors: they are important and ubiquitous, with many embedded and safety-critical systems being based on them.\",\"PeriodicalId\":344295,\"journal\":{\"name\":\"ASPLOS XI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASPLOS XI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1024393.1024410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS XI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1024393.1024410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

嵌入式软件必须满足高可靠性、在资源受限的平台上运行和快速开发等相互冲突的需求。静态程序分析可以帮助实现所有这些目标。为嵌入式目标代码开发分析程序的人们面临着一个难题:在目标体系结构中编写每个指令的抽象版本。目前这是手工完成的,导致抽象操作既错误又不精确。我们已经开发了葫芦:一个新颖的系统,通过使用微处理器(或模拟器)作为自己的规范自动构建抽象操作来解决这些问题。在几乎不需要人工输入的情况下,Hoist生成了一组C函数,这些函数可以被链接到抽象解释器中。我们证明了葫芦生成的抽象操作是正确的,经过广泛的测试,足够快,并且比手动编写的抽象操作更精确。由于目标架构的字长呈指数级增长,Hoist目前仅限于8位机器。能够分析在这些小型处理器上运行的软件是至关重要的:它们非常重要且无处不在,许多嵌入式和安全关键型系统都基于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOIST: a system for automatically deriving static analyzers for embedded systems
Embedded software must meet conflicting requirements such as be-ing highly reliable, running on resource-constrained platforms, and being developed rapidly. Static program analysis can help meet all of these goals. People developing analyzers for embedded object code face a difficult problem: writing an abstract version of each instruction in the target architecture(s). This is currently done by hand, resulting in abstract operations that are both buggy and im-precise. We have developed Hoist: a novel system that solves these problems by automatically constructing abstract operations using a microprocessor (or simulator) as its own specification. With almost no input from a human, Hoist generates a collection of C func-tions that are ready to be linked into an abstract interpreter. We demonstrate that Hoist generates abstract operations that are cor-rect, having been extensively tested, sufficiently fast, and substan-tially more precise than manually written abstract operations. Hoist is currently limited to eight-bit machines due to costs exponential in the word size of the target architecture. It is essential to be able to analyze software running on these small processors: they are important and ubiquitous, with many embedded and safety-critical systems being based on them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal online methods for voltage/frequency control in multiple clock domain microprocessors Programming with transactional coherence and consistency (TCC) Application-level checkpointing for shared memory programs Software prefetching for mark-sweep garbage collection: hardware analysis and software redesign HIDE: an infrastructure for efficiently protecting information leakage on the address bus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1