{"title":"囊","authors":"M. Azhar, M. Pericàs, P. Stenström","doi":"10.1145/3337821.3337865","DOIUrl":null,"url":null,"abstract":"Reducing the energy to carry out computational tasks is key to almost any computing application. We focus in this paper on iterative applications that have explicit computational deadlines per iteration. Our objective is to meet the computational deadlines while minimizing energy. We leverage the vast configuration space offered by heterogeneous multicore platforms which typically expose three dimensions for energy saving configurability: Voltage/frequency levels, thread count and core type (e.g. ARM big/LITTLE). We note that when choosing the most energy-efficient configuration that meets the computational deadline, an iteration will typically finish before the deadline and execution-time slack will build up across iterations. Our proposed slack management policy - SaC (Slack as a Currency) - proactively explores the configuration space to select configurations that can save substantial amounts of energy. To avoid the overheads of an exhaustive search of the configuration space, our proposal also comprises a low-overhead, on-line method by which one can assess each point in the configuration space by linearly interpolating between the endpoints in each configuration-space dimension. Overall, we show that our proposed slack management policy and linear-interpolation configuration assessment method can yield 62% energy savings on top of race-to-idle without missing any deadlines.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SaC\",\"authors\":\"M. Azhar, M. Pericàs, P. Stenström\",\"doi\":\"10.1145/3337821.3337865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing the energy to carry out computational tasks is key to almost any computing application. We focus in this paper on iterative applications that have explicit computational deadlines per iteration. Our objective is to meet the computational deadlines while minimizing energy. We leverage the vast configuration space offered by heterogeneous multicore platforms which typically expose three dimensions for energy saving configurability: Voltage/frequency levels, thread count and core type (e.g. ARM big/LITTLE). We note that when choosing the most energy-efficient configuration that meets the computational deadline, an iteration will typically finish before the deadline and execution-time slack will build up across iterations. Our proposed slack management policy - SaC (Slack as a Currency) - proactively explores the configuration space to select configurations that can save substantial amounts of energy. To avoid the overheads of an exhaustive search of the configuration space, our proposal also comprises a low-overhead, on-line method by which one can assess each point in the configuration space by linearly interpolating between the endpoints in each configuration-space dimension. Overall, we show that our proposed slack management policy and linear-interpolation configuration assessment method can yield 62% energy savings on top of race-to-idle without missing any deadlines.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing the energy to carry out computational tasks is key to almost any computing application. We focus in this paper on iterative applications that have explicit computational deadlines per iteration. Our objective is to meet the computational deadlines while minimizing energy. We leverage the vast configuration space offered by heterogeneous multicore platforms which typically expose three dimensions for energy saving configurability: Voltage/frequency levels, thread count and core type (e.g. ARM big/LITTLE). We note that when choosing the most energy-efficient configuration that meets the computational deadline, an iteration will typically finish before the deadline and execution-time slack will build up across iterations. Our proposed slack management policy - SaC (Slack as a Currency) - proactively explores the configuration space to select configurations that can save substantial amounts of energy. To avoid the overheads of an exhaustive search of the configuration space, our proposal also comprises a low-overhead, on-line method by which one can assess each point in the configuration space by linearly interpolating between the endpoints in each configuration-space dimension. Overall, we show that our proposed slack management policy and linear-interpolation configuration assessment method can yield 62% energy savings on top of race-to-idle without missing any deadlines.