面向云中经济和绿色MapReduce计算的最佳资源配置

Keke Chen, Shumin Guo, James Powers, F. Tian
{"title":"面向云中经济和绿色MapReduce计算的最佳资源配置","authors":"Keke Chen, Shumin Guo, James Powers, F. Tian","doi":"10.1201/b17112-18","DOIUrl":null,"url":null,"abstract":"Running MapReduce programs in the cloud introduces the important problem: how to optimize resource provisioning to minimize the financial charge or job finish time for a specific job? An important step towards this ultimate goal is modeling the cost of MapReduce program. In this chapter, we study the whole process of MapReduce processing and build 1","PeriodicalId":448182,"journal":{"name":"Large Scale and Big Data","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward Optimal Resource Provisioning for Economical and Green MapReduce Computing in the Cloud\",\"authors\":\"Keke Chen, Shumin Guo, James Powers, F. Tian\",\"doi\":\"10.1201/b17112-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Running MapReduce programs in the cloud introduces the important problem: how to optimize resource provisioning to minimize the financial charge or job finish time for a specific job? An important step towards this ultimate goal is modeling the cost of MapReduce program. In this chapter, we study the whole process of MapReduce processing and build 1\",\"PeriodicalId\":448182,\"journal\":{\"name\":\"Large Scale and Big Data\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Large Scale and Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/b17112-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Large Scale and Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b17112-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在云中运行MapReduce程序引入了一个重要的问题:如何优化资源配置以最小化特定作业的财务费用或作业完成时间?实现这一最终目标的一个重要步骤是对MapReduce程序的成本进行建模。在本章中,我们研究了MapReduce处理的整个过程,并构建了1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Optimal Resource Provisioning for Economical and Green MapReduce Computing in the Cloud
Running MapReduce programs in the cloud introduces the important problem: how to optimize resource provisioning to minimize the financial charge or job finish time for a specific job? An important step towards this ultimate goal is modeling the cost of MapReduce program. In this chapter, we study the whole process of MapReduce processing and build 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MapReduce Family of Large-Scale Data-Processing Systems Large-Scale Network Traffic Analysis for Estimating the Size of IP Addresses and Detecting Traffic Anomalies Algebraic Optimization of RDF Graph Pattern Queries on MapReduce Distributed Programming for the Cloud: Models, Challenges, and Analytics Engines Network Performance Aware Graph Partitioning for Large Graph Processing Systems in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1