atp结合膜蛋白是蛋白质跨内质网膜转运所必需的。

D L Zimmerman, P Walter
{"title":"atp结合膜蛋白是蛋白质跨内质网膜转运所必需的。","authors":"D L Zimmerman,&nbsp;P Walter","doi":"10.1091/mbc.2.10.851","DOIUrl":null,"url":null,"abstract":"<p><p>The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 10","pages":"851-9"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.10.851","citationCount":"17","resultStr":"{\"title\":\"An ATP-binding membrane protein is required for protein translocation across the endoplasmic reticulum membrane.\",\"authors\":\"D L Zimmerman,&nbsp;P Walter\",\"doi\":\"10.1091/mbc.2.10.851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"2 10\",\"pages\":\"851-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.2.10.851\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.2.10.851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.10.851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

核苷酸在提供多肽通过内质网(ER)膜转移的能量中的作用仍然是未知的。为了解决这个问题,我们用ATP的光激活类似物8-N3ATP处理内质网来源的哺乳动物微粒体囊泡。这种治疗导致了易位活性的进行性抑制。大约20个微粒体膜蛋白被[α 32P]8-N3ATP标记。其中两种被鉴定为在易位中可能起作用的蛋白质,α信号序列受体(SSR),信号序列受体复合物的35-kDa亚基,以及ER-p180,一种推测的核糖体受体。我们发现易位活性失活与α SSR的光标记呈正相关。相反,我们的数据表明,ER-p180的atp结合结构域对于易位活性是必不可少的,并且与观察到的微粒体囊泡的8-N3ATP敏感性无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ATP-binding membrane protein is required for protein translocation across the endoplasmic reticulum membrane.

The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Alpha 2-macroglobulin restricts plasminogen activation to the surface of RC2A leukemia cells. Activation of two new alpha(1,3)fucosyltransferase activities in Chinese hamster ovary cells by 5-azacytidine. Molecular cloning of a second form of rac protein kinase. Ca2+ inhibits guanine nucleotide-activated phospholipase D in neural-derived NG108-15 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1