探索下一代软件定义内存框架的潜力

Shouwei Chen, I. Rodero
{"title":"探索下一代软件定义内存框架的潜力","authors":"Shouwei Chen, I. Rodero","doi":"10.1109/CAHPC.2018.8645858","DOIUrl":null,"url":null,"abstract":"As in-memory data analytics become increasingly important in a wide range of domains, the ability to develop large-scale and sustainable platforms faces significant challenges related to storage latency and memory size constraints. These challenges can be resolved by adopting new and effective formulations and novel architectures such as software-defined infrastructure. This paper investigates the key issue of data persistency for in-memory processing systems by evaluating persistence methods using different storage and memory devices for Apache Spark and the use of Alluxio. It also proposes and evaluates via simulation a Spark execution model for using disaggregated off-rack memory and non-volatile memory targeting next-generation software-defined infrastructure. Experimental results provide better understanding of behaviors and requirements for improving data persistence in current in-memory systems and provide data points to better understand requirements and design choices for next-generation software-defined infrastructure. The findings indicate that in-memory processing systems can benefit from ongoing software-defined infrastructure implementations; however current frameworks need to be enhanced appropriately to run efficiently at scale.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Next Generation Software-Defined in Memory Frameworks\",\"authors\":\"Shouwei Chen, I. Rodero\",\"doi\":\"10.1109/CAHPC.2018.8645858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As in-memory data analytics become increasingly important in a wide range of domains, the ability to develop large-scale and sustainable platforms faces significant challenges related to storage latency and memory size constraints. These challenges can be resolved by adopting new and effective formulations and novel architectures such as software-defined infrastructure. This paper investigates the key issue of data persistency for in-memory processing systems by evaluating persistence methods using different storage and memory devices for Apache Spark and the use of Alluxio. It also proposes and evaluates via simulation a Spark execution model for using disaggregated off-rack memory and non-volatile memory targeting next-generation software-defined infrastructure. Experimental results provide better understanding of behaviors and requirements for improving data persistence in current in-memory systems and provide data points to better understand requirements and design choices for next-generation software-defined infrastructure. The findings indicate that in-memory processing systems can benefit from ongoing software-defined infrastructure implementations; however current frameworks need to be enhanced appropriately to run efficiently at scale.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着内存数据分析在众多领域变得越来越重要,开发大规模和可持续平台的能力面临着与存储延迟和内存大小限制有关的重大挑战。这些挑战可以通过采用新的有效配方和新型架构(如软件定义的基础设施)来解决。本文通过评估 Apache Spark 使用不同存储和内存设备以及使用 Alluxio 的持久性方法,研究了内存处理系统的数据持久性这一关键问题。它还提出并通过仿真评估了一种 Spark 执行模型,该模型用于使用针对下一代软件定义基础设施的分解机架外内存和非易失性内存。实验结果让人们更好地理解了当前内存系统中改善数据持久性的行为和要求,并提供了数据点,以便更好地理解下一代软件定义基础设施的要求和设计选择。研究结果表明,内存处理系统可以从正在进行的软件定义基础架构实施中获益;不过,当前的框架需要适当改进,以便大规模高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Potential of Next Generation Software-Defined in Memory Frameworks
As in-memory data analytics become increasingly important in a wide range of domains, the ability to develop large-scale and sustainable platforms faces significant challenges related to storage latency and memory size constraints. These challenges can be resolved by adopting new and effective formulations and novel architectures such as software-defined infrastructure. This paper investigates the key issue of data persistency for in-memory processing systems by evaluating persistence methods using different storage and memory devices for Apache Spark and the use of Alluxio. It also proposes and evaluates via simulation a Spark execution model for using disaggregated off-rack memory and non-volatile memory targeting next-generation software-defined infrastructure. Experimental results provide better understanding of behaviors and requirements for improving data persistence in current in-memory systems and provide data points to better understand requirements and design choices for next-generation software-defined infrastructure. The findings indicate that in-memory processing systems can benefit from ongoing software-defined infrastructure implementations; however current frameworks need to be enhanced appropriately to run efficiently at scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1