利用边缘位置差和像素相关对齐立体相机生成的三维扫描

Deepak Rajamohan, M. Pickering, M. Garratt
{"title":"利用边缘位置差和像素相关对齐立体相机生成的三维扫描","authors":"Deepak Rajamohan, M. Pickering, M. Garratt","doi":"10.1109/DICTA.2018.8615836","DOIUrl":null,"url":null,"abstract":"Projection of a textured 3D scan, with a fixed scale, will spatially align with the 2D image of the scanned scene only at an unique pose of the scan. If misaligned, the true 3D alignment can be estimated using information from a 2D-2D registration process that minimizes an appropriate error criteria by penalizing mismatch between the overlapping images. Scan data from complicated real-world scenes poses a challenging registration problem due to the tendency of the optimization procedure to become trapped in local minima. In addition, the 3D scan from a stereo camera is of very highresolution and shows mild geometrical distortion adding to the difficulty. This work presents a new registration process using a similarity measure named Edge Position Difference (EPD) combined with a pixel based correlation similarity measure. Together, the technique is able to show consistent and robust 3D-2D registration performance using stereo data, showcasing the potential for extending the technique for practical large scale mapping applications.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Edge Position Difference and Pixel Correlation for Aligning Stereo-Camera Generated 3D Scans\",\"authors\":\"Deepak Rajamohan, M. Pickering, M. Garratt\",\"doi\":\"10.1109/DICTA.2018.8615836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Projection of a textured 3D scan, with a fixed scale, will spatially align with the 2D image of the scanned scene only at an unique pose of the scan. If misaligned, the true 3D alignment can be estimated using information from a 2D-2D registration process that minimizes an appropriate error criteria by penalizing mismatch between the overlapping images. Scan data from complicated real-world scenes poses a challenging registration problem due to the tendency of the optimization procedure to become trapped in local minima. In addition, the 3D scan from a stereo camera is of very highresolution and shows mild geometrical distortion adding to the difficulty. This work presents a new registration process using a similarity measure named Edge Position Difference (EPD) combined with a pixel based correlation similarity measure. Together, the technique is able to show consistent and robust 3D-2D registration performance using stereo data, showcasing the potential for extending the technique for practical large scale mapping applications.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有固定比例的纹理3D扫描的投影将仅在扫描的独特姿态下与扫描场景的2D图像在空间上对齐。如果不对齐,可以使用来自2D-2D配准过程的信息来估计真正的3D对齐,该配准过程通过惩罚重叠图像之间的不匹配来最小化适当的错误标准。由于优化过程容易陷入局部极小值,复杂现实场景的扫描数据配准问题具有挑战性。此外,立体相机的三维扫描分辨率很高,显示出轻微的几何畸变,这增加了难度。这项工作提出了一种新的配准过程,使用一种称为边缘位置差(EPD)的相似性度量结合基于像素的相关相似性度量。总之,该技术能够使用立体数据显示一致且稳健的3D-2D配准性能,展示了将该技术扩展到实际大比例尺制图应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Edge Position Difference and Pixel Correlation for Aligning Stereo-Camera Generated 3D Scans
Projection of a textured 3D scan, with a fixed scale, will spatially align with the 2D image of the scanned scene only at an unique pose of the scan. If misaligned, the true 3D alignment can be estimated using information from a 2D-2D registration process that minimizes an appropriate error criteria by penalizing mismatch between the overlapping images. Scan data from complicated real-world scenes poses a challenging registration problem due to the tendency of the optimization procedure to become trapped in local minima. In addition, the 3D scan from a stereo camera is of very highresolution and shows mild geometrical distortion adding to the difficulty. This work presents a new registration process using a similarity measure named Edge Position Difference (EPD) combined with a pixel based correlation similarity measure. Together, the technique is able to show consistent and robust 3D-2D registration performance using stereo data, showcasing the potential for extending the technique for practical large scale mapping applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1