基于Azure云平台开发GIS应用的经验教训

Dinesh Agarwal, S. Prasad
{"title":"基于Azure云平台开发GIS应用的经验教训","authors":"Dinesh Agarwal, S. Prasad","doi":"10.1109/CLOUD.2012.140","DOIUrl":null,"url":null,"abstract":"Spatial overlay processing is a widely used compute-intensive GIS application that involves aggregation of two or more layers of maps to facilitate intelligent querying on the collocated output data. When large GIS data sets are represented in polygonal (vector) form, spatial analysis runs for extended periods of time, which is undesirable for time-sensitive applications such as emergency response. We have, for the first time, created an open-architecture-based system named Crayons for Azure cloud platform using state-of-the-art techniques. During the course of development of Crayons system, we faced numerous challenges and gained invaluable insights into Azure cloud platform, which are presented in detail in this paper. The challenges range from limitations of cloud storage and computational services to the choices of tools and technologies used for high performance computing (HPC) application design. We report our findings to provide concrete guidelines to an eScience developer for 1) choice of persistent data storage mechanism, 2) data structure representation, 3) communication and synchronization among nodes, 4) building robust failsafe applications, and 5) optimal cost-effective utilization of resources. Our insights into each challenge faced, the solution to overcome it, and the discussion on the lessons learnt from each challenge can be of help to eScience developers starting application development on Azure and possibly other cloud platforms.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Lessons Learnt from the Development of GIS Application on Azure Cloud Platform\",\"authors\":\"Dinesh Agarwal, S. Prasad\",\"doi\":\"10.1109/CLOUD.2012.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial overlay processing is a widely used compute-intensive GIS application that involves aggregation of two or more layers of maps to facilitate intelligent querying on the collocated output data. When large GIS data sets are represented in polygonal (vector) form, spatial analysis runs for extended periods of time, which is undesirable for time-sensitive applications such as emergency response. We have, for the first time, created an open-architecture-based system named Crayons for Azure cloud platform using state-of-the-art techniques. During the course of development of Crayons system, we faced numerous challenges and gained invaluable insights into Azure cloud platform, which are presented in detail in this paper. The challenges range from limitations of cloud storage and computational services to the choices of tools and technologies used for high performance computing (HPC) application design. We report our findings to provide concrete guidelines to an eScience developer for 1) choice of persistent data storage mechanism, 2) data structure representation, 3) communication and synchronization among nodes, 4) building robust failsafe applications, and 5) optimal cost-effective utilization of resources. Our insights into each challenge faced, the solution to overcome it, and the discussion on the lessons learnt from each challenge can be of help to eScience developers starting application development on Azure and possibly other cloud platforms.\",\"PeriodicalId\":214084,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2012.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

空间叠加处理是一种广泛使用的计算密集型GIS应用,它涉及两层或多层地图的聚合,以方便对并置输出数据的智能查询。当大型地理信息系统数据集以多边形(矢量)形式表示时,空间分析运行的时间较长,这对于诸如应急响应等对时间敏感的应用来说是不可取的。我们首次使用最先进的技术,为Azure云平台创建了一个基于开放架构的系统,名为Crayons。在Crayons系统的开发过程中,我们遇到了许多挑战,并获得了对Azure云平台的宝贵见解,本文将详细介绍。挑战的范围从云存储和计算服务的限制到用于高性能计算(HPC)应用程序设计的工具和技术的选择。我们报告了我们的发现,为eScience开发人员提供了具体的指导方针:1)选择持久数据存储机制,2)数据结构表示,3)节点之间的通信和同步,4)构建健壮的故障安全应用程序,以及5)最优的成本效益资源利用。我们对面临的每个挑战的见解、克服这些挑战的解决方案,以及对从每个挑战中吸取的经验教训的讨论,可以帮助eScience开发人员开始在Azure和其他云平台上开发应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lessons Learnt from the Development of GIS Application on Azure Cloud Platform
Spatial overlay processing is a widely used compute-intensive GIS application that involves aggregation of two or more layers of maps to facilitate intelligent querying on the collocated output data. When large GIS data sets are represented in polygonal (vector) form, spatial analysis runs for extended periods of time, which is undesirable for time-sensitive applications such as emergency response. We have, for the first time, created an open-architecture-based system named Crayons for Azure cloud platform using state-of-the-art techniques. During the course of development of Crayons system, we faced numerous challenges and gained invaluable insights into Azure cloud platform, which are presented in detail in this paper. The challenges range from limitations of cloud storage and computational services to the choices of tools and technologies used for high performance computing (HPC) application design. We report our findings to provide concrete guidelines to an eScience developer for 1) choice of persistent data storage mechanism, 2) data structure representation, 3) communication and synchronization among nodes, 4) building robust failsafe applications, and 5) optimal cost-effective utilization of resources. Our insights into each challenge faced, the solution to overcome it, and the discussion on the lessons learnt from each challenge can be of help to eScience developers starting application development on Azure and possibly other cloud platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Resource Scaling Based on Application Service Requirements Optimizing JMS Performance for Cloud-Based Application Servers Sharing-Aware Cloud-Based Mobile Outsourcing QoS-Driven Service Selection for Multi-tenant SaaS Maitland: Lighter-Weight VM Introspection to Support Cyber-security in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1