{"title":"拦截空气动力稳定的编织再入飞行器","authors":"A. Vermeulen, R. Savelsberg","doi":"10.1504/IJIDSS.2014.059965","DOIUrl":null,"url":null,"abstract":"Traditional missile guidance laws are designed against fighter aircraft, with a much lower velocity (600–800 m/s) than ballistic missiles. To see whether intercepting a theatre ballistic missile inside the atmosphere is difficult in terms of missile guidance, trajectories of two different re-entry vehicles and the terminal phase of their interception, while the interceptor is guided by its own sensors, are simulated using MATLAB/Simulink. The interception is always successful if the inherent delay of the missile guidance system is small (below 0.5 seconds). The re-entry vehicles follow weaving trajectories, but the amplitude of the weave is small and does not pose problems for the interceptor. Neither does the high velocity of the missile (2,600 m/s), provided that the interceptor is near the inverse trajectory at the start of the terminal phase. Consequently, current missile guidance technology seems to be sufficient against aerodynamically stable missiles, but early detection and tracking are essential for success.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interception of an aerodynamically stable weaving re-entry vehicle\",\"authors\":\"A. Vermeulen, R. Savelsberg\",\"doi\":\"10.1504/IJIDSS.2014.059965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional missile guidance laws are designed against fighter aircraft, with a much lower velocity (600–800 m/s) than ballistic missiles. To see whether intercepting a theatre ballistic missile inside the atmosphere is difficult in terms of missile guidance, trajectories of two different re-entry vehicles and the terminal phase of their interception, while the interceptor is guided by its own sensors, are simulated using MATLAB/Simulink. The interception is always successful if the inherent delay of the missile guidance system is small (below 0.5 seconds). The re-entry vehicles follow weaving trajectories, but the amplitude of the weave is small and does not pose problems for the interceptor. Neither does the high velocity of the missile (2,600 m/s), provided that the interceptor is near the inverse trajectory at the start of the terminal phase. Consequently, current missile guidance technology seems to be sufficient against aerodynamically stable missiles, but early detection and tracking are essential for success.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2014.059965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2014.059965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interception of an aerodynamically stable weaving re-entry vehicle
Traditional missile guidance laws are designed against fighter aircraft, with a much lower velocity (600–800 m/s) than ballistic missiles. To see whether intercepting a theatre ballistic missile inside the atmosphere is difficult in terms of missile guidance, trajectories of two different re-entry vehicles and the terminal phase of their interception, while the interceptor is guided by its own sensors, are simulated using MATLAB/Simulink. The interception is always successful if the inherent delay of the missile guidance system is small (below 0.5 seconds). The re-entry vehicles follow weaving trajectories, but the amplitude of the weave is small and does not pose problems for the interceptor. Neither does the high velocity of the missile (2,600 m/s), provided that the interceptor is near the inverse trajectory at the start of the terminal phase. Consequently, current missile guidance technology seems to be sufficient against aerodynamically stable missiles, but early detection and tracking are essential for success.