基于改进Googlenet的离线手写汉字识别

Feng Min, Sicheng Zhu, Yansong Wang
{"title":"基于改进Googlenet的离线手写汉字识别","authors":"Feng Min, Sicheng Zhu, Yansong Wang","doi":"10.1145/3430199.3430202","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of misrecognition in offline handwritten Chinese character recognition, this paper proposed an improved shallow GoogLeNet and an error elimination algorithm. Compared with the shallow GoogLeNet, the improved shallow GoogLeNet not only reduced the number of training parameters, but also maintained the depth of the Inception structure. According to the error elimination algorithm, the confidence of the samples in the test results was calculated and the erroneous samples in the dataset were removed. Then the dataset was divided into multiple similar character sets and one dissimilar character set. When the recognition result was in the dissimilar character set, it can be used as the final result. Otherwise, the final result could be obtained by the secondary recognition on the corresponding similar character set. The training and testing of the experiment were carried out on the CISIA-HWDB1.1 dataset. The accuracy of the method was 97.48%, which was 6.68% higher than that of the GoogLeNet network.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Offline Handwritten Chinese Character Recognition Based on Improved Googlenet\",\"authors\":\"Feng Min, Sicheng Zhu, Yansong Wang\",\"doi\":\"10.1145/3430199.3430202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of misrecognition in offline handwritten Chinese character recognition, this paper proposed an improved shallow GoogLeNet and an error elimination algorithm. Compared with the shallow GoogLeNet, the improved shallow GoogLeNet not only reduced the number of training parameters, but also maintained the depth of the Inception structure. According to the error elimination algorithm, the confidence of the samples in the test results was calculated and the erroneous samples in the dataset were removed. Then the dataset was divided into multiple similar character sets and one dissimilar character set. When the recognition result was in the dissimilar character set, it can be used as the final result. Otherwise, the final result could be obtained by the secondary recognition on the corresponding similar character set. The training and testing of the experiment were carried out on the CISIA-HWDB1.1 dataset. The accuracy of the method was 97.48%, which was 6.68% higher than that of the GoogLeNet network.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对离线手写体汉字识别中的错误识别问题,提出了一种改进的浅层GoogLeNet和一种错误消除算法。与浅层GoogLeNet相比,改进的浅层GoogLeNet不仅减少了训练参数的数量,而且保持了Inception结构的深度。根据误差消除算法,计算测试结果中样本的置信度,去除数据集中的错误样本。然后将数据集分成多个相似字符集和一个不相似字符集。当识别结果在不同的字符集内时,可以作为最终结果。否则,可以对相应的相似字符集进行二次识别得到最终结果。实验在csia - hwdb1.1数据集上进行训练和测试。该方法的准确率为97.48%,比GoogLeNet网络的准确率高6.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offline Handwritten Chinese Character Recognition Based on Improved Googlenet
Aiming at the problem of misrecognition in offline handwritten Chinese character recognition, this paper proposed an improved shallow GoogLeNet and an error elimination algorithm. Compared with the shallow GoogLeNet, the improved shallow GoogLeNet not only reduced the number of training parameters, but also maintained the depth of the Inception structure. According to the error elimination algorithm, the confidence of the samples in the test results was calculated and the erroneous samples in the dataset were removed. Then the dataset was divided into multiple similar character sets and one dissimilar character set. When the recognition result was in the dissimilar character set, it can be used as the final result. Otherwise, the final result could be obtained by the secondary recognition on the corresponding similar character set. The training and testing of the experiment were carried out on the CISIA-HWDB1.1 dataset. The accuracy of the method was 97.48%, which was 6.68% higher than that of the GoogLeNet network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1