自动检测笔迹伪造

Sung-Hyuk Cha, C. Tappert
{"title":"自动检测笔迹伪造","authors":"Sung-Hyuk Cha, C. Tappert","doi":"10.1109/IWFHR.2002.1030920","DOIUrl":null,"url":null,"abstract":"We investigated the detection of handwriting forgery by both human and machine. We obtained experimental handwriting data from subjects writing samples in their natural style and writing forgeries of other subjects' handwriting. These handwriting samples were digitally scanned and stored in an image database. We investigated the ease of forging handwriting, and found that many subjects can successfully forge the handwriting of others in terms of shape and size by tracing the authentic handwriting. Our hypothesis is that the authentic handwriting samples provided by subjects in their own natural writing style will have smooth ink traces, while forged handwritings will have wrinkly traces. We believe the reason for this is that forged handwriting is often either traced or copied slowly and is therefore more likely to appear wrinkly when scanned with a high-resolution scanner. Using seven handwriting distance features, we trained an artificial neural network to achieved 89% accuracy on test samples.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Automatic detection of handwriting forgery\",\"authors\":\"Sung-Hyuk Cha, C. Tappert\",\"doi\":\"10.1109/IWFHR.2002.1030920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the detection of handwriting forgery by both human and machine. We obtained experimental handwriting data from subjects writing samples in their natural style and writing forgeries of other subjects' handwriting. These handwriting samples were digitally scanned and stored in an image database. We investigated the ease of forging handwriting, and found that many subjects can successfully forge the handwriting of others in terms of shape and size by tracing the authentic handwriting. Our hypothesis is that the authentic handwriting samples provided by subjects in their own natural writing style will have smooth ink traces, while forged handwritings will have wrinkly traces. We believe the reason for this is that forged handwriting is often either traced or copied slowly and is therefore more likely to appear wrinkly when scanned with a high-resolution scanner. Using seven handwriting distance features, we trained an artificial neural network to achieved 89% accuracy on test samples.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

我们研究了人工和机器检测笔迹伪造的方法。我们获得了实验笔迹数据,包括受试者以其自然风格书写样本和其他人的伪造笔迹。这些笔迹样本经过数字扫描并存储在图像数据库中。我们调查了伪造笔迹的难易程度,发现很多受试者通过追踪真实笔迹,可以成功地在形状和大小上伪造他人的笔迹。我们的假设是,被试以自己的自然书写风格提供的真实笔迹样本会有光滑的墨迹,而伪造的笔迹会有褶皱的痕迹。我们认为,造成这种情况的原因是,伪造的笔迹通常描摹或复制得很慢,因此在用高分辨率扫描仪扫描时更有可能出现皱纹。使用7个手写距离特征,我们训练了一个人工神经网络,在测试样本上达到89%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic detection of handwriting forgery
We investigated the detection of handwriting forgery by both human and machine. We obtained experimental handwriting data from subjects writing samples in their natural style and writing forgeries of other subjects' handwriting. These handwriting samples were digitally scanned and stored in an image database. We investigated the ease of forging handwriting, and found that many subjects can successfully forge the handwriting of others in terms of shape and size by tracing the authentic handwriting. Our hypothesis is that the authentic handwriting samples provided by subjects in their own natural writing style will have smooth ink traces, while forged handwritings will have wrinkly traces. We believe the reason for this is that forged handwriting is often either traced or copied slowly and is therefore more likely to appear wrinkly when scanned with a high-resolution scanner. Using seven handwriting distance features, we trained an artificial neural network to achieved 89% accuracy on test samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1