FEEP:高效贴片最小化的功能性生态合成

Yaotian Liu, Yuhang Zhang, Qing Zhang, Rui Chen, Yongfu Li
{"title":"FEEP:高效贴片最小化的功能性生态合成","authors":"Yaotian Liu, Yuhang Zhang, Qing Zhang, Rui Chen, Yongfu Li","doi":"10.1109/AICAS57966.2023.10168557","DOIUrl":null,"url":null,"abstract":"Functional engineering change order (ECO) has been an essential process in modern complex integrated circuit design. Finding a high-quality circuit patch efficiently has long been a challenge. This paper proposes FEEP, an automatic and efficient synthesis-based functional ECO method. Structural pruning and stratified searching techniques are proposed to minimize search space without extra logical equivalence checks. Moreover, we propose a machine-learning-based two-stage patch size predictor that assists in predicting patch quality. Experimental results show that our algorithm can efficiently search and produce high-quality patches under various test cases.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEEP: Functional ECO Synthesis with Efficient Patch Minimization\",\"authors\":\"Yaotian Liu, Yuhang Zhang, Qing Zhang, Rui Chen, Yongfu Li\",\"doi\":\"10.1109/AICAS57966.2023.10168557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional engineering change order (ECO) has been an essential process in modern complex integrated circuit design. Finding a high-quality circuit patch efficiently has long been a challenge. This paper proposes FEEP, an automatic and efficient synthesis-based functional ECO method. Structural pruning and stratified searching techniques are proposed to minimize search space without extra logical equivalence checks. Moreover, we propose a machine-learning-based two-stage patch size predictor that assists in predicting patch quality. Experimental results show that our algorithm can efficiently search and produce high-quality patches under various test cases.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功能工程变更顺序(ECO)是现代复杂集成电路设计中的一个重要过程。长期以来,高效地找到高质量的电路贴片一直是一个挑战。本文提出了一种自动、高效的基于合成的功能化ECO方法——FEEP。提出了结构修剪和分层搜索技术,以减少搜索空间,而不需要额外的逻辑等价检查。此外,我们提出了一个基于机器学习的两阶段补丁大小预测器,以帮助预测补丁质量。实验结果表明,该算法在各种测试用例下都能有效地搜索并生成高质量的补丁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FEEP: Functional ECO Synthesis with Efficient Patch Minimization
Functional engineering change order (ECO) has been an essential process in modern complex integrated circuit design. Finding a high-quality circuit patch efficiently has long been a challenge. This paper proposes FEEP, an automatic and efficient synthesis-based functional ECO method. Structural pruning and stratified searching techniques are proposed to minimize search space without extra logical equivalence checks. Moreover, we propose a machine-learning-based two-stage patch size predictor that assists in predicting patch quality. Experimental results show that our algorithm can efficiently search and produce high-quality patches under various test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1