{"title":"基于毫米波的大规模均匀矩形阵列测距定位边界","authors":"Donglin Wang, M. Fattouche, F. Ghannouchi","doi":"10.1109/CCECE.2018.8447755","DOIUrl":null,"url":null,"abstract":"This paper aims at investigating the feasibility of ranging and positioning in millimeter (mm)-level accuracy by adopting millimeter-wave and 3D massive antenna array. The agent is equipped with massive phased uniform rectangular array (URA) and multiple anchors are considered in localization networks to pursue a higher accuracy, where a far-field environment is assumed for phased massive URA. Fundamental limits of both time-based ranging and positioning are derived by Crámer-Rao bound (CRB), where the relationship between the fundamental bound of range estimation and that of position estimation is theoretically clarified. Numerical results show that the proposed scenario achieves a precise mm-level accuracy for ranging and positioning.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounds of mmWave-Based Ranging and Positioning with Massive Uniform Rectangular Array\",\"authors\":\"Donglin Wang, M. Fattouche, F. Ghannouchi\",\"doi\":\"10.1109/CCECE.2018.8447755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at investigating the feasibility of ranging and positioning in millimeter (mm)-level accuracy by adopting millimeter-wave and 3D massive antenna array. The agent is equipped with massive phased uniform rectangular array (URA) and multiple anchors are considered in localization networks to pursue a higher accuracy, where a far-field environment is assumed for phased massive URA. Fundamental limits of both time-based ranging and positioning are derived by Crámer-Rao bound (CRB), where the relationship between the fundamental bound of range estimation and that of position estimation is theoretically clarified. Numerical results show that the proposed scenario achieves a precise mm-level accuracy for ranging and positioning.\",\"PeriodicalId\":181463,\"journal\":{\"name\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2018.8447755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bounds of mmWave-Based Ranging and Positioning with Massive Uniform Rectangular Array
This paper aims at investigating the feasibility of ranging and positioning in millimeter (mm)-level accuracy by adopting millimeter-wave and 3D massive antenna array. The agent is equipped with massive phased uniform rectangular array (URA) and multiple anchors are considered in localization networks to pursue a higher accuracy, where a far-field environment is assumed for phased massive URA. Fundamental limits of both time-based ranging and positioning are derived by Crámer-Rao bound (CRB), where the relationship between the fundamental bound of range estimation and that of position estimation is theoretically clarified. Numerical results show that the proposed scenario achieves a precise mm-level accuracy for ranging and positioning.