一种在作战任务剖面测试过程中管理可靠性增长的方法

L. H. Crow
{"title":"一种在作战任务剖面测试过程中管理可靠性增长的方法","authors":"L. H. Crow","doi":"10.1109/RAMS.2008.4925768","DOIUrl":null,"url":null,"abstract":"It is common practice for systems to be subjective to operational testing during their development program. The objective of this testing is to evaluate the performance, including reliability, of the system under conditions that represent actual use conditions. Because of expense, resources, schedule, and other considerations, these operational tests rarely represent exactly the actual use conditions. Rather, stated mission profile conditions are specific for the operational testing. These mission profiles conditions are typically general statements that guide the testing on an average basis during the testing. Because of practical constraints the elements that make up the mission profile conditions are typically tested under varying schedules with the intent that on average the mission profile conditions are met. It is also common practice that reliability corrective actions are incorporated into the system during this type of testing. That is, the test is often an operational mission profile reliability growth test. Under these conditions, we usually have a lack of structure for managing the elements that make up the mission profiles, which makes it very difficult to have an agreed-on methodology for estimating the system's reliability. This is especially true if reliability growth is occurring. Many systems fail operational testing because key assessments parameters can not be made in a straightforward clear manner so that management can take timely and appropriate action. This paper addresses this issue and presents a methodology currently being applied on major Department of Defense programs for operational reliability growth testing.","PeriodicalId":143940,"journal":{"name":"2008 Annual Reliability and Maintainability Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A methodology for managing reliability growth during operational mission profile testing\",\"authors\":\"L. H. Crow\",\"doi\":\"10.1109/RAMS.2008.4925768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common practice for systems to be subjective to operational testing during their development program. The objective of this testing is to evaluate the performance, including reliability, of the system under conditions that represent actual use conditions. Because of expense, resources, schedule, and other considerations, these operational tests rarely represent exactly the actual use conditions. Rather, stated mission profile conditions are specific for the operational testing. These mission profiles conditions are typically general statements that guide the testing on an average basis during the testing. Because of practical constraints the elements that make up the mission profile conditions are typically tested under varying schedules with the intent that on average the mission profile conditions are met. It is also common practice that reliability corrective actions are incorporated into the system during this type of testing. That is, the test is often an operational mission profile reliability growth test. Under these conditions, we usually have a lack of structure for managing the elements that make up the mission profiles, which makes it very difficult to have an agreed-on methodology for estimating the system's reliability. This is especially true if reliability growth is occurring. Many systems fail operational testing because key assessments parameters can not be made in a straightforward clear manner so that management can take timely and appropriate action. This paper addresses this issue and presents a methodology currently being applied on major Department of Defense programs for operational reliability growth testing.\",\"PeriodicalId\":143940,\"journal\":{\"name\":\"2008 Annual Reliability and Maintainability Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2008.4925768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2008.4925768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在系统的开发计划中,系统对操作测试是主观的,这是常见的做法。该测试的目的是评估系统在代表实际使用条件下的性能,包括可靠性。由于费用、资源、进度和其他考虑因素,这些操作测试很少准确地表示实际使用条件。相反,所陈述的任务轮廓条件是具体用于操作测试的。这些任务概况条件是典型的一般性陈述,在测试期间以平均为基础指导测试。由于实际限制,构成任务剖面条件的要素通常在不同的时间表下进行测试,目的是平均满足任务剖面条件。在这种类型的测试中,将可靠性纠正措施纳入系统也是常见的做法。也就是说,测试通常是操作任务轮廓可靠性增长测试。在这些条件下,我们通常缺乏管理组成任务概况的元素的结构,这使得很难有一个一致同意的方法来估计系统的可靠性。在可靠性增长的情况下尤其如此。许多系统未能通过操作测试,因为关键评估参数不能以直接明确的方式进行,以便管理层能够及时采取适当的行动。本文解决了这一问题,并提出了一种目前正在国防部主要项目中用于作战可靠性增长测试的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A methodology for managing reliability growth during operational mission profile testing
It is common practice for systems to be subjective to operational testing during their development program. The objective of this testing is to evaluate the performance, including reliability, of the system under conditions that represent actual use conditions. Because of expense, resources, schedule, and other considerations, these operational tests rarely represent exactly the actual use conditions. Rather, stated mission profile conditions are specific for the operational testing. These mission profiles conditions are typically general statements that guide the testing on an average basis during the testing. Because of practical constraints the elements that make up the mission profile conditions are typically tested under varying schedules with the intent that on average the mission profile conditions are met. It is also common practice that reliability corrective actions are incorporated into the system during this type of testing. That is, the test is often an operational mission profile reliability growth test. Under these conditions, we usually have a lack of structure for managing the elements that make up the mission profiles, which makes it very difficult to have an agreed-on methodology for estimating the system's reliability. This is especially true if reliability growth is occurring. Many systems fail operational testing because key assessments parameters can not be made in a straightforward clear manner so that management can take timely and appropriate action. This paper addresses this issue and presents a methodology currently being applied on major Department of Defense programs for operational reliability growth testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What's wrong with bent pin analysis, and what to do about it A systems reliability approach to decision making in autonomous multi-platform systems operating a phased mission Software tools for PRA Optimal highway maintenance policies under uncertainty Reliability analysis of phased-mission systems using Bayesian networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1