基于相关函数统计检验的级联进化多目标识别改进游泳速度分析

H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho
{"title":"基于相关函数统计检验的级联进化多目标识别改进游泳速度分析","authors":"H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho","doi":"10.1109/MCDM.2014.7007206","DOIUrl":null,"url":null,"abstract":"By using biomechanical analyses applied to sports many researchers are providing important information to coaches and athletes in order to reach better performance in a shorter time. In swimming, these kinds of analyses are being used to evaluate, to detect and to improve the skills of high level athletes. Recently, evolutionary computing theories have been adopted to support swim velocity profile identification. Based on velocity profiles recognition, it is possible to identify distinct characteristics and classify swimmers according to their abilities. In this way, this work presents an application of Radial Basis Function Neural Network (RBF-NN) associated to a proposed cascaded evolutionary procedure composed by a genetic and Multiobjective Differential Evolution (MODE) algorithms as optimization method for searching the best fitness within a set of parameters to configure the RBF-NN. The main goal and novelty of the proposed approach is to enable, through the adoption of cascaded multiobjective optimization, the use of correlation based tests in order to select both the model lagged inputs and the associated parameters in a supervised fashion. Finally, the real data of a Brazilian elite female swimmer in crawl and breaststroke styles obtained into a 25 meters swimming pool have been identified by the proposed method. The soundness of the approach is illustrated with the adherence to the model validity tests and the values of the multiple correlation coefficients between 0.95 and 0.93 for two tests for both breaststroke and crawl strokes, respectively.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cascaded evolutionary multiobjective identification based on correlation function statistical tests for improving velocity analyzes in swimming\",\"authors\":\"H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho\",\"doi\":\"10.1109/MCDM.2014.7007206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using biomechanical analyses applied to sports many researchers are providing important information to coaches and athletes in order to reach better performance in a shorter time. In swimming, these kinds of analyses are being used to evaluate, to detect and to improve the skills of high level athletes. Recently, evolutionary computing theories have been adopted to support swim velocity profile identification. Based on velocity profiles recognition, it is possible to identify distinct characteristics and classify swimmers according to their abilities. In this way, this work presents an application of Radial Basis Function Neural Network (RBF-NN) associated to a proposed cascaded evolutionary procedure composed by a genetic and Multiobjective Differential Evolution (MODE) algorithms as optimization method for searching the best fitness within a set of parameters to configure the RBF-NN. The main goal and novelty of the proposed approach is to enable, through the adoption of cascaded multiobjective optimization, the use of correlation based tests in order to select both the model lagged inputs and the associated parameters in a supervised fashion. Finally, the real data of a Brazilian elite female swimmer in crawl and breaststroke styles obtained into a 25 meters swimming pool have been identified by the proposed method. The soundness of the approach is illustrated with the adherence to the model validity tests and the values of the multiple correlation coefficients between 0.95 and 0.93 for two tests for both breaststroke and crawl strokes, respectively.\",\"PeriodicalId\":335170,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2014.7007206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过将生物力学分析应用于运动,许多研究人员为教练和运动员提供了重要的信息,以便在更短的时间内取得更好的成绩。在游泳领域,这类分析被用于评估、检测和提高高水平运动员的技术。近年来,进化计算理论已被用于支持游泳速度剖面的识别。基于速度剖面识别,可以识别出不同的特征,并根据游泳者的能力进行分类。通过这种方式,本工作将径向基函数神经网络(RBF-NN)应用于由遗传和多目标差分进化(MODE)算法组成的级联进化过程,作为在一组参数中搜索最佳适应度以配置RBF-NN的优化方法。提出的方法的主要目标和新颖之处在于,通过采用级联多目标优化,使用基于相关性的测试,以便以监督的方式选择模型滞后输入和相关参数。最后,利用该方法对巴西优秀女子25米泳池爬泳和蛙泳的真实数据进行了识别。通过对模型效度测试的依从性以及对蛙泳和爬泳两项测试的多重相关系数分别在0.95 ~ 0.93之间,说明了该方法的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascaded evolutionary multiobjective identification based on correlation function statistical tests for improving velocity analyzes in swimming
By using biomechanical analyses applied to sports many researchers are providing important information to coaches and athletes in order to reach better performance in a shorter time. In swimming, these kinds of analyses are being used to evaluate, to detect and to improve the skills of high level athletes. Recently, evolutionary computing theories have been adopted to support swim velocity profile identification. Based on velocity profiles recognition, it is possible to identify distinct characteristics and classify swimmers according to their abilities. In this way, this work presents an application of Radial Basis Function Neural Network (RBF-NN) associated to a proposed cascaded evolutionary procedure composed by a genetic and Multiobjective Differential Evolution (MODE) algorithms as optimization method for searching the best fitness within a set of parameters to configure the RBF-NN. The main goal and novelty of the proposed approach is to enable, through the adoption of cascaded multiobjective optimization, the use of correlation based tests in order to select both the model lagged inputs and the associated parameters in a supervised fashion. Finally, the real data of a Brazilian elite female swimmer in crawl and breaststroke styles obtained into a 25 meters swimming pool have been identified by the proposed method. The soundness of the approach is illustrated with the adherence to the model validity tests and the values of the multiple correlation coefficients between 0.95 and 0.93 for two tests for both breaststroke and crawl strokes, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An extended bilevel programming model and its kth-best algorithm for dynamic decision making in emergency situations A bottom-up implementation of Path-Relinking for Phylogenetic reconstruction applied to Maximum Parsimony Visualization and classification of protein secondary structures using Self-Organizing Maps Gene interaction networks boost genetic algorithm performance in biomarker discovery Partially Optimized Cyclic Shift Crossover for Multi-Objective Genetic Algorithms for the multi-objective Vehicle Routing Problem with time-windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1