基于高阶统计张量算法的多眼伪影去除

Sunan Ge, Yan Yang, Wei Ni, Rui Zhang
{"title":"基于高阶统计张量算法的多眼伪影去除","authors":"Sunan Ge, Yan Yang, Wei Ni, Rui Zhang","doi":"10.1109/IGBSG.2018.8393530","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to propose a multiple ocular artifacts (OAs) removal method using the high order tensor algorithm. Four categories high order tensor methods are adopted to separate the real electroencephalogram (EEG) and ocular signals by underdetermined blind source separation (UBSS) model. The correlation coefficient and the non-negativity are adopted to choose the suitable UBSS algorithm. The ocular components are identified by the kurtosis value after separating between EEG and ocular signals. Then, the free-ocular sources components are reconstructed to EEG without OAs. The simulations show that the proposed method can effectively remove the OAs. At the same time, it also can retain the useful information after removing OAs.","PeriodicalId":356367,"journal":{"name":"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiple ocular artifacts removal based on high-order statistical tensor algorithm\",\"authors\":\"Sunan Ge, Yan Yang, Wei Ni, Rui Zhang\",\"doi\":\"10.1109/IGBSG.2018.8393530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to propose a multiple ocular artifacts (OAs) removal method using the high order tensor algorithm. Four categories high order tensor methods are adopted to separate the real electroencephalogram (EEG) and ocular signals by underdetermined blind source separation (UBSS) model. The correlation coefficient and the non-negativity are adopted to choose the suitable UBSS algorithm. The ocular components are identified by the kurtosis value after separating between EEG and ocular signals. Then, the free-ocular sources components are reconstructed to EEG without OAs. The simulations show that the proposed method can effectively remove the OAs. At the same time, it also can retain the useful information after removing OAs.\",\"PeriodicalId\":356367,\"journal\":{\"name\":\"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGBSG.2018.8393530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGBSG.2018.8393530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是提出一种基于高阶张量算法的多眼伪影去除方法。采用欠定盲源分离(UBSS)模型,采用四类高阶张量方法分离真实脑电图和眼电信号。采用相关系数和非负性来选择合适的UBSS算法。将脑电信号与眼信号分离后,利用峰度值识别眼成分。然后,将自由眼源分量重构为不含oa的脑电图。仿真结果表明,该方法可以有效地去除oa。同时,在去除oa后,还能保留有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple ocular artifacts removal based on high-order statistical tensor algorithm
The aim of this paper is to propose a multiple ocular artifacts (OAs) removal method using the high order tensor algorithm. Four categories high order tensor methods are adopted to separate the real electroencephalogram (EEG) and ocular signals by underdetermined blind source separation (UBSS) model. The correlation coefficient and the non-negativity are adopted to choose the suitable UBSS algorithm. The ocular components are identified by the kurtosis value after separating between EEG and ocular signals. Then, the free-ocular sources components are reconstructed to EEG without OAs. The simulations show that the proposed method can effectively remove the OAs. At the same time, it also can retain the useful information after removing OAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance testing of NoSQL and RDBMS for storing big data in e-applications A high-power laser diode driver in vehicle headlight application Application of wavelet analysis theory in the switch cabinet arc protection system New hybrid control for wide input full-bridge LLC resonant DC/DC converter Simulations of network bottlenecks in smart grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1