鱼和熊掌兼得:在不丢失词汇匹配的情况下训练语言推理的神经检索

Vikas Yadav, Steven Bethard, M. Surdeanu
{"title":"鱼和熊掌兼得:在不丢失词汇匹配的情况下训练语言推理的神经检索","authors":"Vikas Yadav, Steven Bethard, M. Surdeanu","doi":"10.1145/3397271.3401311","DOIUrl":null,"url":null,"abstract":"We present a study on the importance of information retrieval (IR) techniques for both the interpretability and the performance of neural question answering (QA) methods. We show that the current state-of-the-art transformer methods (like RoBERTa) encode poorly simple information retrieval (IR) concepts such as lexical overlap between query and the document. To mitigate this limitation, we introduce a supervised RoBERTa QA method that is trained to mimic the behavior of BM25 and the soft-matching idea behind embedding-based alignment methods. We show that fusing the simple lexical-matching IR concepts in transformer techniques results in improvement a) of their (lexical-matching) interpretability, b) retrieval performance, and c) the QA performance on two multi-hop QA datasets. We further highlight the lexical-chasm gap bridging capabilities of transformer methods by analyzing the attention distributions of the supervised RoBERTa classifier over the context versus lexically-matched token pairs.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Having Your Cake and Eating it Too: Training Neural Retrieval for Language Inference without Losing Lexical Match\",\"authors\":\"Vikas Yadav, Steven Bethard, M. Surdeanu\",\"doi\":\"10.1145/3397271.3401311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a study on the importance of information retrieval (IR) techniques for both the interpretability and the performance of neural question answering (QA) methods. We show that the current state-of-the-art transformer methods (like RoBERTa) encode poorly simple information retrieval (IR) concepts such as lexical overlap between query and the document. To mitigate this limitation, we introduce a supervised RoBERTa QA method that is trained to mimic the behavior of BM25 and the soft-matching idea behind embedding-based alignment methods. We show that fusing the simple lexical-matching IR concepts in transformer techniques results in improvement a) of their (lexical-matching) interpretability, b) retrieval performance, and c) the QA performance on two multi-hop QA datasets. We further highlight the lexical-chasm gap bridging capabilities of transformer methods by analyzing the attention distributions of the supervised RoBERTa classifier over the context versus lexically-matched token pairs.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了信息检索(IR)技术对神经问答(QA)方法的可解释性和性能的重要性。我们展示了当前最先进的转换方法(如RoBERTa)对简单的信息检索(IR)概念(如查询和文档之间的词法重叠)进行了很差的编码。为了减轻这一限制,我们引入了一种受监督的RoBERTa QA方法,该方法经过训练以模仿BM25的行为和基于嵌入的对齐方法背后的软匹配思想。我们表明,在变压器技术中融合简单的词汇匹配IR概念可以改善a)它们的(词汇匹配)可解释性,b)检索性能,以及c)两个多跳QA数据集上的QA性能。通过分析有监督RoBERTa分类器在上下文上的注意力分布与词汇匹配的令牌对的对比,我们进一步强调了transformer方法的词汇鸿沟桥接能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Having Your Cake and Eating it Too: Training Neural Retrieval for Language Inference without Losing Lexical Match
We present a study on the importance of information retrieval (IR) techniques for both the interpretability and the performance of neural question answering (QA) methods. We show that the current state-of-the-art transformer methods (like RoBERTa) encode poorly simple information retrieval (IR) concepts such as lexical overlap between query and the document. To mitigate this limitation, we introduce a supervised RoBERTa QA method that is trained to mimic the behavior of BM25 and the soft-matching idea behind embedding-based alignment methods. We show that fusing the simple lexical-matching IR concepts in transformer techniques results in improvement a) of their (lexical-matching) interpretability, b) retrieval performance, and c) the QA performance on two multi-hop QA datasets. We further highlight the lexical-chasm gap bridging capabilities of transformer methods by analyzing the attention distributions of the supervised RoBERTa classifier over the context versus lexically-matched token pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1