{"title":"用于室内和室外区域自主巡逻的移动机器人视觉导航","authors":"Alessandro Di Fava, Massimo Satler, P. Tripicchio","doi":"10.1109/MED.2015.7158823","DOIUrl":null,"url":null,"abstract":"In many applications, robots should be able to move autonomously in semi-structured or unstructured environments. Autonomous robots can be employed for instance in area patrolling tasks in order to perform surveillance of sites. To autonomously navigate in an unknown outdoor scenario, a robot should be able to acquire sensible information about the environment by means of its own sensors and at the same time perform some reasoning to decide where and how to move. In this paper, we present a vision-based solution for the decision making and a behavior based low-level control for the navigation. Three different testing scenarios have been employed to assess the capabilities of the proposed approach: a computer simulated scenario, an indoor test on a real robotic platform and finally an outdoor test in a city park.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Visual navigation of mobile robots for autonomous patrolling of indoor and outdoor areas\",\"authors\":\"Alessandro Di Fava, Massimo Satler, P. Tripicchio\",\"doi\":\"10.1109/MED.2015.7158823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications, robots should be able to move autonomously in semi-structured or unstructured environments. Autonomous robots can be employed for instance in area patrolling tasks in order to perform surveillance of sites. To autonomously navigate in an unknown outdoor scenario, a robot should be able to acquire sensible information about the environment by means of its own sensors and at the same time perform some reasoning to decide where and how to move. In this paper, we present a vision-based solution for the decision making and a behavior based low-level control for the navigation. Three different testing scenarios have been employed to assess the capabilities of the proposed approach: a computer simulated scenario, an indoor test on a real robotic platform and finally an outdoor test in a city park.\",\"PeriodicalId\":316642,\"journal\":{\"name\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2015.7158823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual navigation of mobile robots for autonomous patrolling of indoor and outdoor areas
In many applications, robots should be able to move autonomously in semi-structured or unstructured environments. Autonomous robots can be employed for instance in area patrolling tasks in order to perform surveillance of sites. To autonomously navigate in an unknown outdoor scenario, a robot should be able to acquire sensible information about the environment by means of its own sensors and at the same time perform some reasoning to decide where and how to move. In this paper, we present a vision-based solution for the decision making and a behavior based low-level control for the navigation. Three different testing scenarios have been employed to assess the capabilities of the proposed approach: a computer simulated scenario, an indoor test on a real robotic platform and finally an outdoor test in a city park.