显著减少使用波束成形的无线网状网络所需的频率信道数量

Aizaz U. Chaudhry, R. Hafez, J. Chinneck
{"title":"显著减少使用波束成形的无线网状网络所需的频率信道数量","authors":"Aizaz U. Chaudhry, R. Hafez, J. Chinneck","doi":"10.1109/WCNC.2014.6952444","DOIUrl":null,"url":null,"abstract":"In a classical multi-radio multi-channel Wireless Mesh Network (WMN) architecture, mesh nodes use omni-directional antennas. Due to the circular radiation pattern of such antennas, when a mesh node communicates with its neighbor on a certain frequency channel, other mesh nodes within its range must remain silent. Directional antennas have been proposed as a way to improve spatial reuse. Since these antennas are non-steerable, they are not suitable for a dynamic WMN. In this paper, we address the problem of co-channel interference in a dynamic WMN environment by using beamforming based on utilizing the multiple omni-directional antennas of a multi-radio mesh node in the form of a linear antenna array. Our novel Linear Array Beamforming-based Channel Assignment method reduces the number of frequency channels required (NCR) for interference-free communication among the mesh nodes. It significantly outperforms the classical omni-directional antenna pattern-based channel assignment approach in terms of NCR for all node-degrees.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Significantly reducing the number of frequency channels required for wireless mesh networks using beamforming\",\"authors\":\"Aizaz U. Chaudhry, R. Hafez, J. Chinneck\",\"doi\":\"10.1109/WCNC.2014.6952444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a classical multi-radio multi-channel Wireless Mesh Network (WMN) architecture, mesh nodes use omni-directional antennas. Due to the circular radiation pattern of such antennas, when a mesh node communicates with its neighbor on a certain frequency channel, other mesh nodes within its range must remain silent. Directional antennas have been proposed as a way to improve spatial reuse. Since these antennas are non-steerable, they are not suitable for a dynamic WMN. In this paper, we address the problem of co-channel interference in a dynamic WMN environment by using beamforming based on utilizing the multiple omni-directional antennas of a multi-radio mesh node in the form of a linear antenna array. Our novel Linear Array Beamforming-based Channel Assignment method reduces the number of frequency channels required (NCR) for interference-free communication among the mesh nodes. It significantly outperforms the classical omni-directional antenna pattern-based channel assignment approach in terms of NCR for all node-degrees.\",\"PeriodicalId\":220393,\"journal\":{\"name\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2014.6952444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在经典的多无线电多通道无线网状网络(WMN)体系结构中,网状节点使用全向天线。由于这种天线的圆形辐射方向图,当一个mesh节点在某一频率信道上与其相邻节点通信时,其范围内的其他mesh节点必须保持沉默。定向天线被认为是提高空间复用的一种方法。由于这些天线是不可操纵的,它们不适合用于动态WMN。在本文中,我们通过采用波束成形的方法,以线性天线阵列的形式利用多无线电网格节点的多个全向天线来解决动态WMN环境中的同信道干扰问题。本文提出的基于线性阵列波束形成的信道分配方法减少了网格节点间无干扰通信所需的频率信道数。在所有节点度的NCR方面,它明显优于经典的基于全向天线方向图的信道分配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Significantly reducing the number of frequency channels required for wireless mesh networks using beamforming
In a classical multi-radio multi-channel Wireless Mesh Network (WMN) architecture, mesh nodes use omni-directional antennas. Due to the circular radiation pattern of such antennas, when a mesh node communicates with its neighbor on a certain frequency channel, other mesh nodes within its range must remain silent. Directional antennas have been proposed as a way to improve spatial reuse. Since these antennas are non-steerable, they are not suitable for a dynamic WMN. In this paper, we address the problem of co-channel interference in a dynamic WMN environment by using beamforming based on utilizing the multiple omni-directional antennas of a multi-radio mesh node in the form of a linear antenna array. Our novel Linear Array Beamforming-based Channel Assignment method reduces the number of frequency channels required (NCR) for interference-free communication among the mesh nodes. It significantly outperforms the classical omni-directional antenna pattern-based channel assignment approach in terms of NCR for all node-degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of general order selection in decentralized cognitive radio networks Performance of maximum-largest weighted delay first algorithm in long term evolution-advanced with carrier aggregation Distributed space-time codes for amplify-and-forward relaying networks Novel modulation detection scheme for underwater acoustic communication signal through short-time detailed cyclostationary features Relay selection and power allocation with minimum rate guarantees for cognitive radio systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1