{"title":"太阳能上升气流发电技术:对抗全球变暖和能源成本上升","authors":"Wilfried B. Krätzig","doi":"10.6000/1929-6002.2015.04.02.2","DOIUrl":null,"url":null,"abstract":"Solar updraft power technology (SUPT) forms a highly innovative, modern and efficient concept for solar-based electricity generation. Solar updraft power plants (SUPPs) are fueled purely by solar irradiation. They require no water for power generation, so their ideal locations are deserts. A SUPP consists of the glass-covered collector area (CA), in its centre the solar chimney (SC), and around the SC’s perimeter the power conversion units (PCU). This arrangement causes a permanent flow of warm air through the SUPP, producing electricity. The paper describes computer simulation concepts to evaluate the power/energy harvest in such plants, based on fluid-thermodynamics and radiation-physics. The nonlinear numerical processes for the SUPPs’ power harvests are solved by fast computer algorithms. Finally, the high economy of SUPT for world-wide arid zones in terms of leveled electricity costs (LECs) is exemplified by several optimized SUPPs.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solar Updraft Power Technology: Fighting Global Warming and Rising Energy Costs\",\"authors\":\"Wilfried B. Krätzig\",\"doi\":\"10.6000/1929-6002.2015.04.02.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar updraft power technology (SUPT) forms a highly innovative, modern and efficient concept for solar-based electricity generation. Solar updraft power plants (SUPPs) are fueled purely by solar irradiation. They require no water for power generation, so their ideal locations are deserts. A SUPP consists of the glass-covered collector area (CA), in its centre the solar chimney (SC), and around the SC’s perimeter the power conversion units (PCU). This arrangement causes a permanent flow of warm air through the SUPP, producing electricity. The paper describes computer simulation concepts to evaluate the power/energy harvest in such plants, based on fluid-thermodynamics and radiation-physics. The nonlinear numerical processes for the SUPPs’ power harvests are solved by fast computer algorithms. Finally, the high economy of SUPT for world-wide arid zones in terms of leveled electricity costs (LECs) is exemplified by several optimized SUPPs.\",\"PeriodicalId\":394478,\"journal\":{\"name\":\"Journal of Technology Innovations in Renewable Energy\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology Innovations in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-6002.2015.04.02.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2015.04.02.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar Updraft Power Technology: Fighting Global Warming and Rising Energy Costs
Solar updraft power technology (SUPT) forms a highly innovative, modern and efficient concept for solar-based electricity generation. Solar updraft power plants (SUPPs) are fueled purely by solar irradiation. They require no water for power generation, so their ideal locations are deserts. A SUPP consists of the glass-covered collector area (CA), in its centre the solar chimney (SC), and around the SC’s perimeter the power conversion units (PCU). This arrangement causes a permanent flow of warm air through the SUPP, producing electricity. The paper describes computer simulation concepts to evaluate the power/energy harvest in such plants, based on fluid-thermodynamics and radiation-physics. The nonlinear numerical processes for the SUPPs’ power harvests are solved by fast computer algorithms. Finally, the high economy of SUPT for world-wide arid zones in terms of leveled electricity costs (LECs) is exemplified by several optimized SUPPs.