基于随机逼近的可穿戴传感器鲁棒人体强度变化活动识别

N. Alshurafa, Wenyao Xu, Jason J. Liu, Ming-chun Huang, B. Mortazavi, M. Sarrafzadeh, C. Roberts
{"title":"基于随机逼近的可穿戴传感器鲁棒人体强度变化活动识别","authors":"N. Alshurafa, Wenyao Xu, Jason J. Liu, Ming-chun Huang, B. Mortazavi, M. Sarrafzadeh, C. Roberts","doi":"10.1109/BSN.2013.6575515","DOIUrl":null,"url":null,"abstract":"Detecting human activity independent of intensity is essential in many applications, primarily in calculating metabolic equivalent rates (MET) and extracting human context awareness from on-body inertial sensors. Many classifiers that train on an activity at a subset of intensity levels fail to classify the same activity at other intensity levels. This demonstrates weakness in the underlying activity model. Training a classifier for an activity at every intensity level is also not practical. In this paper we tackle a novel intensity-independent activity recognition application where the class labels exhibit large variability, the data is of high dimensionality, and clustering algorithms are necessary. We propose a new robust Stochastic Approximation framework for enhanced classification of such data. Experiments are reported for each dataset using two clustering techniques, K-Means and Gaussian Mixture Models. The Stochastic Approximation algorithm consistently outperforms other well-known classification schemes which validates the use of our proposed clustered data representation.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors\",\"authors\":\"N. Alshurafa, Wenyao Xu, Jason J. Liu, Ming-chun Huang, B. Mortazavi, M. Sarrafzadeh, C. Roberts\",\"doi\":\"10.1109/BSN.2013.6575515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting human activity independent of intensity is essential in many applications, primarily in calculating metabolic equivalent rates (MET) and extracting human context awareness from on-body inertial sensors. Many classifiers that train on an activity at a subset of intensity levels fail to classify the same activity at other intensity levels. This demonstrates weakness in the underlying activity model. Training a classifier for an activity at every intensity level is also not practical. In this paper we tackle a novel intensity-independent activity recognition application where the class labels exhibit large variability, the data is of high dimensionality, and clustering algorithms are necessary. We propose a new robust Stochastic Approximation framework for enhanced classification of such data. Experiments are reported for each dataset using two clustering techniques, K-Means and Gaussian Mixture Models. The Stochastic Approximation algorithm consistently outperforms other well-known classification schemes which validates the use of our proposed clustered data representation.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

在许多应用中,检测独立于强度的人类活动是必不可少的,主要是在计算代谢当量率(MET)和从人体惯性传感器提取人类环境感知方面。许多在强度水平子集上训练的分类器无法在其他强度水平上对相同的活动进行分类。这表明了底层活动模型的弱点。为每个强度级别的活动训练分类器也是不切实际的。在本文中,我们解决了一种新的强度无关的活动识别应用,其中类标签表现出很大的可变性,数据是高维的,并且需要聚类算法。我们提出了一个新的鲁棒随机近似框架来增强这类数据的分类。使用两种聚类技术(K-Means和高斯混合模型)对每个数据集进行了实验报告。随机近似算法始终优于其他知名的分类方案,这验证了我们提出的聚类数据表示的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust human intensity-varying activity recognition using Stochastic Approximation in wearable sensors
Detecting human activity independent of intensity is essential in many applications, primarily in calculating metabolic equivalent rates (MET) and extracting human context awareness from on-body inertial sensors. Many classifiers that train on an activity at a subset of intensity levels fail to classify the same activity at other intensity levels. This demonstrates weakness in the underlying activity model. Training a classifier for an activity at every intensity level is also not practical. In this paper we tackle a novel intensity-independent activity recognition application where the class labels exhibit large variability, the data is of high dimensionality, and clustering algorithms are necessary. We propose a new robust Stochastic Approximation framework for enhanced classification of such data. Experiments are reported for each dataset using two clustering techniques, K-Means and Gaussian Mixture Models. The Stochastic Approximation algorithm consistently outperforms other well-known classification schemes which validates the use of our proposed clustered data representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-person vision-based head detector for markerless human motion capture Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (WAMAS) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone A low power miniaturized CMOS-based continuous glucose monitoring system Multi-channel pulse oximetry for wearable physiological monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1