Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert
{"title":"对选定的身体部位进行快速、精确的体表面积估计的计算方法","authors":"Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert","doi":"10.1109/IIPHDW.2018.8388380","DOIUrl":null,"url":null,"abstract":"Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.","PeriodicalId":405270,"journal":{"name":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing methods for fast and precise body surface area estimation of selected body parts\",\"authors\":\"Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert\",\"doi\":\"10.1109/IIPHDW.2018.8388380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.\",\"PeriodicalId\":405270,\"journal\":{\"name\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIPHDW.2018.8388380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPHDW.2018.8388380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing methods for fast and precise body surface area estimation of selected body parts
Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.