对选定的身体部位进行快速、精确的体表面积估计的计算方法

Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert
{"title":"对选定的身体部位进行快速、精确的体表面积估计的计算方法","authors":"Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert","doi":"10.1109/IIPHDW.2018.8388380","DOIUrl":null,"url":null,"abstract":"Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.","PeriodicalId":405270,"journal":{"name":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing methods for fast and precise body surface area estimation of selected body parts\",\"authors\":\"Gustaw Rzyman, G. Redlarski, Aleksander Palkowski, Piotr Tojza, M. Krawczuk, J. Siebert\",\"doi\":\"10.1109/IIPHDW.2018.8388380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.\",\"PeriodicalId\":405270,\"journal\":{\"name\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Interdisciplinary PhD Workshop (IIPhDW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIPHDW.2018.8388380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPHDW.2018.8388380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前使用的体表面积(BSA)公式仅对典型体质的个体给出满意的结果,而对于老年人,肥胖或厌食症患者则不能期望准确的结果。特别值得注意的是对于严重肥胖个体(身体质量指数大于35 kg/m2)的结果,其BSA估计误差达到80%。我们研究的主要目标是为特定身体部位开发精确的BSA模型。我们已经为广泛的患者取得了满意的结果。使用回归模型,如:支持向量回归,多层感知器回归,随机梯度下降,或岭回归,误差比例降低了四倍。机器学习算法使平均估计误差从1.2倍降低到8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing methods for fast and precise body surface area estimation of selected body parts
Currently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for specific body parts. We have achieved satisfactory results for a wide range of patients. Using regression models, such as: support vector regression, multilayer perceptron regressor, stochastic gradient descent, or ridge regression, a fourfold decrease in errors proportion is achieved. Machine learning algorithms led to reduction from 1.2 to 8 times for mean estimation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency response modeling of power transformer windings considering the attributes of ferromagnetic core Analysis of the impact of temperature load on the state of stress in a bolted flange connection Energy efficiency analysis of railway turnout heating with a simplified snow model using classical and contactless heating method Air-gap data transmission using screen brightness modulation Universal windows application for the parameters calculation of shields against ionizing radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1