LTE在低空空域无人机与基础设施通信中的适用性

L. Schalk, M. Herrmann
{"title":"LTE在低空空域无人机与基础设施通信中的适用性","authors":"L. Schalk, M. Herrmann","doi":"10.1109/DASC.2017.8102112","DOIUrl":null,"url":null,"abstract":"The increasing availability of cheap and powerful drones for various applications is likely to cause a heavy usage of the very low level airspace in metropolitan areas with hundreds of simultaneously airborne drones per square kilometer in the near future. Certainly, the predicted large number of drones presents a major challenge to future UTM and especially to supporting communications systems. However, a robust and reliable communications system for drone-to-infrastructure communications is inevitably needed to grant all drones access to various services provided by UTM. In previous works, it has already been shown that commercial LTE networks are capable of providing connectivity to drones flying at low altitudes in principle. However, airborne drones which transmit data to the UTM infrastructure produce severe inter-cell interference since they have a strong line-of-sight connection to multiple LTE base stations at a time. Hence, we investigate further the suitability of the LTE uplink for drone-to-infrastructure communications in very low level airspace by LTE system-level simulations in this work. In particular, we identify the maximum drone density that can be thoroughly monitored and safely coordinated by a UTM system with LTE communication links. Our simulations show that an LTE system with 5 Mhz uplink bandwidth can support a message delivery ratio of more than 95% for drone densities of up to 200 drones per square kilometer assuming that all drones have to periodically transmit messages of 300 bytes at a rate of 10 Hz. It is concluded that future research has to focus on the mitigation of inter-cell interference so even a larger number of drones can get reliable access to all UTM services.","PeriodicalId":130890,"journal":{"name":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Suitability of LTE for drone-to-infrastructure communications in very low level airspace\",\"authors\":\"L. Schalk, M. Herrmann\",\"doi\":\"10.1109/DASC.2017.8102112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing availability of cheap and powerful drones for various applications is likely to cause a heavy usage of the very low level airspace in metropolitan areas with hundreds of simultaneously airborne drones per square kilometer in the near future. Certainly, the predicted large number of drones presents a major challenge to future UTM and especially to supporting communications systems. However, a robust and reliable communications system for drone-to-infrastructure communications is inevitably needed to grant all drones access to various services provided by UTM. In previous works, it has already been shown that commercial LTE networks are capable of providing connectivity to drones flying at low altitudes in principle. However, airborne drones which transmit data to the UTM infrastructure produce severe inter-cell interference since they have a strong line-of-sight connection to multiple LTE base stations at a time. Hence, we investigate further the suitability of the LTE uplink for drone-to-infrastructure communications in very low level airspace by LTE system-level simulations in this work. In particular, we identify the maximum drone density that can be thoroughly monitored and safely coordinated by a UTM system with LTE communication links. Our simulations show that an LTE system with 5 Mhz uplink bandwidth can support a message delivery ratio of more than 95% for drone densities of up to 200 drones per square kilometer assuming that all drones have to periodically transmit messages of 300 bytes at a rate of 10 Hz. It is concluded that future research has to focus on the mitigation of inter-cell interference so even a larger number of drones can get reliable access to all UTM services.\",\"PeriodicalId\":130890,\"journal\":{\"name\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2017.8102112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2017.8102112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

越来越多的廉价和强大的无人机用于各种应用,可能会导致在不久的将来,每平方公里数百架同时空中飞行的无人机在大都市地区大量使用非常低的空域。当然,预测的大量无人机对未来的UTM,特别是支持通信系统提出了重大挑战。然而,为了使所有无人机能够使用UTM提供的各种服务,不可避免地需要一个强大而可靠的无人机基础设施通信系统。在之前的工作中,已经证明商用LTE网络原则上可以为低空飞行的无人机提供连接。然而,将数据传输到UTM基础设施的机载无人机会产生严重的小区间干扰,因为它们同时与多个LTE基站有很强的视距连接。因此,我们在这项工作中通过LTE系统级模拟进一步研究了LTE上行链路在极低空域中用于无人机基础设施通信的适用性。特别是,我们确定了可以通过具有LTE通信链路的UTM系统进行彻底监控和安全协调的最大无人机密度。我们的模拟表明,假设所有无人机都必须以10赫兹的速率定期传输300字节的消息,那么在无人机密度高达每平方公里200架无人机的情况下,具有5 Mhz上行带宽的LTE系统可以支持超过95%的消息传递率。结论是,未来的研究必须集中在减轻小区间干扰上,以便更多的无人机能够可靠地访问所有UTM服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suitability of LTE for drone-to-infrastructure communications in very low level airspace
The increasing availability of cheap and powerful drones for various applications is likely to cause a heavy usage of the very low level airspace in metropolitan areas with hundreds of simultaneously airborne drones per square kilometer in the near future. Certainly, the predicted large number of drones presents a major challenge to future UTM and especially to supporting communications systems. However, a robust and reliable communications system for drone-to-infrastructure communications is inevitably needed to grant all drones access to various services provided by UTM. In previous works, it has already been shown that commercial LTE networks are capable of providing connectivity to drones flying at low altitudes in principle. However, airborne drones which transmit data to the UTM infrastructure produce severe inter-cell interference since they have a strong line-of-sight connection to multiple LTE base stations at a time. Hence, we investigate further the suitability of the LTE uplink for drone-to-infrastructure communications in very low level airspace by LTE system-level simulations in this work. In particular, we identify the maximum drone density that can be thoroughly monitored and safely coordinated by a UTM system with LTE communication links. Our simulations show that an LTE system with 5 Mhz uplink bandwidth can support a message delivery ratio of more than 95% for drone densities of up to 200 drones per square kilometer assuming that all drones have to periodically transmit messages of 300 bytes at a rate of 10 Hz. It is concluded that future research has to focus on the mitigation of inter-cell interference so even a larger number of drones can get reliable access to all UTM services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards higher level of A-SMGCS: Handshake of electric taxi and trajectory-based taxi operations Automatic speed profiling and automatic landings during advanced RNP to xLS flight tests An assessment of reduced crew and single pilot operations in commercial transport aircraft operations Evaluation of a tactical surface metering tool for Charlotte Douglas international airport via human-in-the-loop simulation Recommended changes to interval management to achieve operational implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1