“亚美利哥·韦斯普奇”号高舰推进装置改造:仿真自动化设计

M. Altosole, M. Figari, C. Ferrero, Vittorio Giuffra, L. Piva
{"title":"“亚美利哥·韦斯普奇”号高舰推进装置改造:仿真自动化设计","authors":"M. Altosole, M. Figari, C. Ferrero, Vittorio Giuffra, L. Piva","doi":"10.1109/SPEEDAM.2014.6872132","DOIUrl":null,"url":null,"abstract":"The paper is focused on the most important aspects of the electric propulsion retrofitting of the tall ship Amerigo Vespucci, decided by the Italian Navy in 2010 to improve performance, flexibility and reliability of the propulsion system. The automation design is based on a simulation study, aimed at the ship performance prediction in both sailing and motor propulsion conditions. In particular, an original control logic is investigated by numerical simulation, in order to drive the propeller to the “zero-thrust” condition during sailing propulsion: by this way, it could be possible to avoid the negative effect of the trailing propeller on the transmission efficiency and safety, as well as on the vessel speed.","PeriodicalId":344918,"journal":{"name":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Propulsion retrofitting of the tall ship Amerigo Vespucci: Automation design by simulation\",\"authors\":\"M. Altosole, M. Figari, C. Ferrero, Vittorio Giuffra, L. Piva\",\"doi\":\"10.1109/SPEEDAM.2014.6872132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is focused on the most important aspects of the electric propulsion retrofitting of the tall ship Amerigo Vespucci, decided by the Italian Navy in 2010 to improve performance, flexibility and reliability of the propulsion system. The automation design is based on a simulation study, aimed at the ship performance prediction in both sailing and motor propulsion conditions. In particular, an original control logic is investigated by numerical simulation, in order to drive the propeller to the “zero-thrust” condition during sailing propulsion: by this way, it could be possible to avoid the negative effect of the trailing propeller on the transmission efficiency and safety, as well as on the vessel speed.\",\"PeriodicalId\":344918,\"journal\":{\"name\":\"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEEDAM.2014.6872132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDAM.2014.6872132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这篇论文的重点是意大利海军2010年决定对“亚美利哥·韦斯普奇”号高舰进行电力推进改造的最重要方面,以提高推进系统的性能、灵活性和可靠性。自动化设计是在仿真研究的基础上,针对船舶在航行和电机推进两种工况下的性能预测进行的。特别通过数值模拟研究了一种新颖的控制逻辑,使螺旋桨在航行推进过程中处于“零推力”状态,从而有可能避免尾桨对传动效率和安全性以及船速的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propulsion retrofitting of the tall ship Amerigo Vespucci: Automation design by simulation
The paper is focused on the most important aspects of the electric propulsion retrofitting of the tall ship Amerigo Vespucci, decided by the Italian Navy in 2010 to improve performance, flexibility and reliability of the propulsion system. The automation design is based on a simulation study, aimed at the ship performance prediction in both sailing and motor propulsion conditions. In particular, an original control logic is investigated by numerical simulation, in order to drive the propeller to the “zero-thrust” condition during sailing propulsion: by this way, it could be possible to avoid the negative effect of the trailing propeller on the transmission efficiency and safety, as well as on the vessel speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless controlled circuit for PV panel disconnection in case of fire Voltage stabilization in weak grids by high power charging stations Concepts for an integration of quick charging stations in weak power grids Some lab experiments on the control of an aircraft electrical landing gear Controller Hardware-In-the-Loop validation of a magnetic core saturation algorithm for fault ride-through evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1