分布式视觉目标跟踪的适应性体系结构

Domenic Forte, Ankur Srivastava
{"title":"分布式视觉目标跟踪的适应性体系结构","authors":"Domenic Forte, Ankur Srivastava","doi":"10.1109/ICCD.2011.6081421","DOIUrl":null,"url":null,"abstract":"There are a growing number of visual tracking applications for mobile devices. However, the computer vision algorithms which process real-time video to track moving targets are demanding. Since a single mobile device possesses limited computational capabilities, energy, etc. to fully support target tracking, some works have investigated architectures which migrate a portion of tracking duties to another device at the cost of transmission bandwidth and energy. In this paper, we investigate the resource utilization in such architectures and present an adaptable architecture which balances tracking workload among the participating devices based on current resource availability (energy, temperature, bandwidth). Results show that the proposed solution requires low additional overhead, can improve on tracking system lifetime by reducing energy consumption, and is more effective in maintaining safe operating temperatures within participants as compared to previously investigated architecture","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptable architectures for distributed visual target tracking\",\"authors\":\"Domenic Forte, Ankur Srivastava\",\"doi\":\"10.1109/ICCD.2011.6081421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a growing number of visual tracking applications for mobile devices. However, the computer vision algorithms which process real-time video to track moving targets are demanding. Since a single mobile device possesses limited computational capabilities, energy, etc. to fully support target tracking, some works have investigated architectures which migrate a portion of tracking duties to another device at the cost of transmission bandwidth and energy. In this paper, we investigate the resource utilization in such architectures and present an adaptable architecture which balances tracking workload among the participating devices based on current resource availability (energy, temperature, bandwidth). Results show that the proposed solution requires low additional overhead, can improve on tracking system lifetime by reducing energy consumption, and is more effective in maintaining safe operating temperatures within participants as compared to previously investigated architecture\",\"PeriodicalId\":354015,\"journal\":{\"name\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2011.6081421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对移动设备的视觉跟踪应用越来越多。然而,处理实时视频以跟踪运动目标的计算机视觉算法要求很高。由于单个移动设备具有有限的计算能力、能量等,无法完全支持目标跟踪,因此一些工作已经研究了以传输带宽和能量为代价将部分跟踪任务迁移到另一个设备的架构。在本文中,我们研究了这种架构中的资源利用率,并提出了一种适应性架构,该架构基于当前资源可用性(能量,温度,带宽)平衡参与设备之间的跟踪工作负载。结果表明,与先前研究的架构相比,所提出的解决方案需要较低的额外开销,可以通过减少能源消耗来改善跟踪系统的使用寿命,并且在保持参与者内的安全操作温度方面更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptable architectures for distributed visual target tracking
There are a growing number of visual tracking applications for mobile devices. However, the computer vision algorithms which process real-time video to track moving targets are demanding. Since a single mobile device possesses limited computational capabilities, energy, etc. to fully support target tracking, some works have investigated architectures which migrate a portion of tracking duties to another device at the cost of transmission bandwidth and energy. In this paper, we investigate the resource utilization in such architectures and present an adaptable architecture which balances tracking workload among the participating devices based on current resource availability (energy, temperature, bandwidth). Results show that the proposed solution requires low additional overhead, can improve on tracking system lifetime by reducing energy consumption, and is more effective in maintaining safe operating temperatures within participants as compared to previously investigated architecture
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid system level power consumption estimation for FPGA-based MPSoC Modeling and design of a nanoscale memory cell for hardening to a single event with multiple node upset Using stochastic computing to implement digital image processing algorithms Energy-efficient multi-level cell phase-change memory system with data encoding Positive Davio-based synthesis algorithm for reversible logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1