基于植入式和可穿戴式传感器数据融合的假体膝关节角度估计

A. Arami, A. Barré, Roderik Berthelin, K. Aminian
{"title":"基于植入式和可穿戴式传感器数据融合的假体膝关节角度估计","authors":"A. Arami, A. Barré, Roderik Berthelin, K. Aminian","doi":"10.1109/BSN.2013.6575473","DOIUrl":null,"url":null,"abstract":"In this work, we studied a combination of embedded magnetic measurement system in a knee prosthesis and wearable inertial sensors to estimate two knee joint rotations namely flexion-extension and internal-external rotations. The near optimal sensor configuration was designed for implantable measurement system, and linear estimators were used to estimate the mentioned angles. This system was separately evaluated in a mechanical knee simulator and the effect of the imposed Abduction-Adduction rotation was also studied on the angle estimations. To reduce the power consumption of the internal system, we reduced the sampling rate and duty cycled the implantable sensors. Then we compensated the lack of information via use of kinematic information from wearable sensors to provide accurate angle estimations. As long as this smart prosthesis is not implanted yet on a subject, the angles estimations from implantable sensors and wearable sensors are realistically simulated for four subjects. The simulated angle estimations were fed to the designed data fusion algorithms to boost the estimation performance. The results were considerably improved via use of Maximum Entropy Ordered Weighted Averaging (MEOWA) fusion for flexion angles, but not for internal-external angle estimations.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Estimation of prosthetic knee angles via data fusion of implantable and wearable sensors\",\"authors\":\"A. Arami, A. Barré, Roderik Berthelin, K. Aminian\",\"doi\":\"10.1109/BSN.2013.6575473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we studied a combination of embedded magnetic measurement system in a knee prosthesis and wearable inertial sensors to estimate two knee joint rotations namely flexion-extension and internal-external rotations. The near optimal sensor configuration was designed for implantable measurement system, and linear estimators were used to estimate the mentioned angles. This system was separately evaluated in a mechanical knee simulator and the effect of the imposed Abduction-Adduction rotation was also studied on the angle estimations. To reduce the power consumption of the internal system, we reduced the sampling rate and duty cycled the implantable sensors. Then we compensated the lack of information via use of kinematic information from wearable sensors to provide accurate angle estimations. As long as this smart prosthesis is not implanted yet on a subject, the angles estimations from implantable sensors and wearable sensors are realistically simulated for four subjects. The simulated angle estimations were fed to the designed data fusion algorithms to boost the estimation performance. The results were considerably improved via use of Maximum Entropy Ordered Weighted Averaging (MEOWA) fusion for flexion angles, but not for internal-external angle estimations.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们研究了膝关节假体中的嵌入式磁测量系统和可穿戴惯性传感器的组合,以估计膝关节的两种旋转,即屈伸和内外旋转。为植入式测量系统设计了接近最优的传感器配置,并使用线性估计器对上述角度进行估计。该系统分别在机械膝关节模拟器中进行了评估,并研究了施加外展-内收旋转对角度估计的影响。为了降低内部系统的功耗,我们降低了可植入传感器的采样率和占空比。然后,我们通过使用可穿戴传感器的运动学信息来补偿信息的不足,以提供准确的角度估计。在该智能假肢尚未植入人体的前提下,对四名受试者的植入式传感器和可穿戴式传感器的角度估计进行了逼真的模拟。将模拟的角度估计输入到设计的数据融合算法中,以提高估计性能。通过使用最大熵有序加权平均(MEOWA)融合挠曲角,结果显着改善,但不用于内外角估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of prosthetic knee angles via data fusion of implantable and wearable sensors
In this work, we studied a combination of embedded magnetic measurement system in a knee prosthesis and wearable inertial sensors to estimate two knee joint rotations namely flexion-extension and internal-external rotations. The near optimal sensor configuration was designed for implantable measurement system, and linear estimators were used to estimate the mentioned angles. This system was separately evaluated in a mechanical knee simulator and the effect of the imposed Abduction-Adduction rotation was also studied on the angle estimations. To reduce the power consumption of the internal system, we reduced the sampling rate and duty cycled the implantable sensors. Then we compensated the lack of information via use of kinematic information from wearable sensors to provide accurate angle estimations. As long as this smart prosthesis is not implanted yet on a subject, the angles estimations from implantable sensors and wearable sensors are realistically simulated for four subjects. The simulated angle estimations were fed to the designed data fusion algorithms to boost the estimation performance. The results were considerably improved via use of Maximum Entropy Ordered Weighted Averaging (MEOWA) fusion for flexion angles, but not for internal-external angle estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-person vision-based head detector for markerless human motion capture Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (WAMAS) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone A low power miniaturized CMOS-based continuous glucose monitoring system Multi-channel pulse oximetry for wearable physiological monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1