{"title":"Simulation-driven Latency Estimations for Multi-core Machine Learning Accelerators","authors":"Yannick Braatz, D. Rieber, T. Soliman, O. Bringmann","doi":"10.1109/AICAS57966.2023.10168589","DOIUrl":null,"url":null,"abstract":"Underutilization of compute resources leads to decreased performance of single-core machine learning (ML) accelerators. Therefore, multi-core accelerators divide the computational load among multiple smaller groups of processing elements (PEs), keeping more resources active in parallel. However, while producing higher throughput, the accelerator behavior becomes more complex. Supplying multiple cores with data demands adjustments to the on-chip memory hierarchy and direct memory access controller (DMAC) programming. Correctly estimating these effects becomes crucial for optimizing multi-core accelerators, especially in design space exploration (DSE). This work introduces a novel semi-simulated prediction methodology for latency estimations in multi-core ML accelerators. Simulating only dynamic system interactions while determining the latency of isolated accelerator elements analytically makes the proposed methodology precise and fast. We evaluate our methodology on an in-house configurable accelerator with various computational cores on two widely used convolutional neural networks (CNNs). We can estimate the accelerator latency with an average error of 4.7%.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算资源利用率不足导致单核机器学习(ML)加速器性能下降。因此,多核加速器将计算负载分配给多个较小的处理元素组(pe),使更多的资源处于并行活动状态。然而,在产生更高吞吐量的同时,加速器的行为变得更加复杂。为多个核心提供数据需要对片上存储器层次结构和直接存储器访问控制器(DMAC)编程进行调整。正确估计这些影响对于优化多核加速器至关重要,特别是在设计空间探索(DSE)中。在分析确定孤立加速器元件延迟的同时,只模拟动态系统相互作用,使得该方法精确、快速。我们在两个广泛使用的卷积神经网络(cnn)上的内部可配置加速器上评估了我们的方法。我们可以估计加速器延迟的平均误差为4.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation-driven Latency Estimations for Multi-core Machine Learning Accelerators
Underutilization of compute resources leads to decreased performance of single-core machine learning (ML) accelerators. Therefore, multi-core accelerators divide the computational load among multiple smaller groups of processing elements (PEs), keeping more resources active in parallel. However, while producing higher throughput, the accelerator behavior becomes more complex. Supplying multiple cores with data demands adjustments to the on-chip memory hierarchy and direct memory access controller (DMAC) programming. Correctly estimating these effects becomes crucial for optimizing multi-core accelerators, especially in design space exploration (DSE). This work introduces a novel semi-simulated prediction methodology for latency estimations in multi-core ML accelerators. Simulating only dynamic system interactions while determining the latency of isolated accelerator elements analytically makes the proposed methodology precise and fast. We evaluate our methodology on an in-house configurable accelerator with various computational cores on two widely used convolutional neural networks (CNNs). We can estimate the accelerator latency with an average error of 4.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1