{"title":"基于遗传算法的分布式模糊聚类方法","authors":"Chih-Hsiu Wei, C. Fahn","doi":"10.1109/AFSS.1996.583630","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A distributed approach to fuzzy clustering by genetic algorithms\",\"authors\":\"Chih-Hsiu Wei, C. Fahn\",\"doi\":\"10.1109/AFSS.1996.583630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.\",\"PeriodicalId\":197019,\"journal\":{\"name\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFSS.1996.583630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

模糊聚类(c-means)是一种广为人知的无监督聚类算法,但它不能保证找到全局最小值,因为它在求解微分问题时,从给定点出发,采用迭代法逼近目标函数的最小值。为了克服这一缺点,我们在模糊聚类算法中引入了遗传搜索策略,从多点的概念来探索数据空间。遗传算法直接应用于模糊聚类是不合适的,因为有时数据集是巨大的。在这种情况下,染色体会太长,因此提出了一种基于遗传算法的分布式模糊聚类方法,将巨大的搜索空间划分为许多小的搜索空间。仿真结果表明,该算法运行良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distributed approach to fuzzy clustering by genetic algorithms
Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting rough set theory in very large databases using oracle RDBMS Theory of including degrees and its applications to uncertainty inferences Fuzzy decision making through relationships analysis between criteria Stratification structures on a kind of completely distributive lattices and their applications in theory of topological molecular lattices Supporting consensus reaching under fuzziness via ordered weighted averaging (OWA) operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1