{"title":"基于遗传算法的分布式模糊聚类方法","authors":"Chih-Hsiu Wei, C. Fahn","doi":"10.1109/AFSS.1996.583630","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A distributed approach to fuzzy clustering by genetic algorithms\",\"authors\":\"Chih-Hsiu Wei, C. Fahn\",\"doi\":\"10.1109/AFSS.1996.583630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.\",\"PeriodicalId\":197019,\"journal\":{\"name\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFSS.1996.583630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distributed approach to fuzzy clustering by genetic algorithms
Fuzzy clustering (c-means) is a widely known unsupervised clustering algorithm, but it can not guarantee to find the global minimum, because it approximates the minimum of an objective function by the iterative method in solving the differentiation problem, starting from a given point. For overcoming this drawback, we incorporate the genetic search strategies in the fuzzy clustering algorithm to explore the data space from a multiple-point concept. The direct application of the genetic algorithms to the fuzzy clustering is not suitable, because sometimes the data set is enormous. Under this situation, the chromosome would be too long, so a distributed approach to fuzzy clustering by genetic algorithms is proposed to divide the huge search space into many small ones. The simulation results show our algorithm works fine.