多核系统的预取感知共享资源管理

Eiman Ebrahimi, Chang Joo Lee, O. Mutlu, Y. Patt
{"title":"多核系统的预取感知共享资源管理","authors":"Eiman Ebrahimi, Chang Joo Lee, O. Mutlu, Y. Patt","doi":"10.1145/2000064.2000081","DOIUrl":null,"url":null,"abstract":"Chip multiprocessors (CMPs) share a large portion of the memory subsystem among multiple cores. Recent proposals have addressed high-performance and fair management of these shared resources; however, none of them take into account prefetch requests. Without prefetching, significant performance is lost, which is why existing systems prefetch. By not taking into account prefetch requests, recent shared-resource management proposals often significantly degrade both performance and fairness, rather than improve them in the presence of prefetching. This paper is the first to propose mechanisms that both manage the shared resources of a multi-core chip to obtain high-performance and fairness, and also exploit prefetching. We apply our proposed mechanisms to two resource-based management techniques for memory scheduling and one source-throttling-based management technique for the entire shared memory system. We show that our mechanisms improve the performance of a 4-core system that uses network fair queuing, parallelism-aware batch scheduling, and fairness via source throttling by 11.0%, 10.9%, and 11.3% respectively, while also significantly improving fairness.","PeriodicalId":340732,"journal":{"name":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":"{\"title\":\"Prefetch-aware shared-resource management for multi-core systems\",\"authors\":\"Eiman Ebrahimi, Chang Joo Lee, O. Mutlu, Y. Patt\",\"doi\":\"10.1145/2000064.2000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chip multiprocessors (CMPs) share a large portion of the memory subsystem among multiple cores. Recent proposals have addressed high-performance and fair management of these shared resources; however, none of them take into account prefetch requests. Without prefetching, significant performance is lost, which is why existing systems prefetch. By not taking into account prefetch requests, recent shared-resource management proposals often significantly degrade both performance and fairness, rather than improve them in the presence of prefetching. This paper is the first to propose mechanisms that both manage the shared resources of a multi-core chip to obtain high-performance and fairness, and also exploit prefetching. We apply our proposed mechanisms to two resource-based management techniques for memory scheduling and one source-throttling-based management technique for the entire shared memory system. We show that our mechanisms improve the performance of a 4-core system that uses network fair queuing, parallelism-aware batch scheduling, and fairness via source throttling by 11.0%, 10.9%, and 11.3% respectively, while also significantly improving fairness.\",\"PeriodicalId\":340732,\"journal\":{\"name\":\"2011 38th Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"154\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 38th Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2000064.2000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2000064.2000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

摘要

芯片多处理器(cmp)在多个内核之间共享内存子系统的很大一部分。最近的建议涉及对这些共享资源的高效和公平管理;但是,它们都不考虑预取请求。如果不进行预取,将会造成很大的性能损失,这就是现有系统预取的原因。由于没有考虑预取请求,最近的共享资源管理建议通常会显著降低性能和公平性,而不是在预取的情况下提高性能和公平性。本文首次提出了管理多核芯片共享资源以获得高性能和公平性的机制,以及利用预取的机制。我们将提出的机制应用于两种基于资源的内存调度管理技术和一种基于源节流的整个共享内存系统管理技术。我们表明,我们的机制提高了使用网络公平排队、并行感知批调度和通过源节流的公平性的4核系统的性能,分别提高了11.0%、10.9%和11.3%,同时也显著提高了公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prefetch-aware shared-resource management for multi-core systems
Chip multiprocessors (CMPs) share a large portion of the memory subsystem among multiple cores. Recent proposals have addressed high-performance and fair management of these shared resources; however, none of them take into account prefetch requests. Without prefetching, significant performance is lost, which is why existing systems prefetch. By not taking into account prefetch requests, recent shared-resource management proposals often significantly degrade both performance and fairness, rather than improve them in the presence of prefetching. This paper is the first to propose mechanisms that both manage the shared resources of a multi-core chip to obtain high-performance and fairness, and also exploit prefetching. We apply our proposed mechanisms to two resource-based management techniques for memory scheduling and one source-throttling-based management technique for the entire shared memory system. We show that our mechanisms improve the performance of a 4-core system that uses network fair queuing, parallelism-aware batch scheduling, and fairness via source throttling by 11.0%, 10.9%, and 11.3% respectively, while also significantly improving fairness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crafting a usable microkernel, processor, and I/O system with strict and provable information flow security Exploring the tradeoffs between programmability and efficiency in data-parallel accelerators Scalable power control for many-core architectures running multi-threaded applications Virtualizing performance asymmetric multi-core systems DBAR: An efficient routing algorithm to support multiple concurrent applications in networks-on-chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1