SparseCCL:稀疏图像的连通成分标记和分析

A. Hennequin, Benjamin Couturier, V. Gligorov, L. Lacassagne
{"title":"SparseCCL:稀疏图像的连通成分标记和分析","authors":"A. Hennequin, Benjamin Couturier, V. Gligorov, L. Lacassagne","doi":"10.1109/DASIP48288.2019.9049184","DOIUrl":null,"url":null,"abstract":"Connected components labeling and analysis for dense images have been extensively studied on a wide range of architectures. Some applications, like particles detectors in High Energy Physics, need to analyse many small and sparse images at high throughput. Because they process all pixels of the image, classic algorithms for dense images are inefficient on sparse data. We address this inefficiency by introducing a new algorithm specifically designed for sparse images. We show that we can further improve this sparse algorithm by specializing it for the data input format, avoiding a decoding step and processing multiple pixels at once. A benchmark on Intel and AMD CPUs shows that the algorithm is from x 1.6 to x 2.5 faster on sparse images.","PeriodicalId":120855,"journal":{"name":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SparseCCL: Connected Components Labeling and Analysis for sparse images\",\"authors\":\"A. Hennequin, Benjamin Couturier, V. Gligorov, L. Lacassagne\",\"doi\":\"10.1109/DASIP48288.2019.9049184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected components labeling and analysis for dense images have been extensively studied on a wide range of architectures. Some applications, like particles detectors in High Energy Physics, need to analyse many small and sparse images at high throughput. Because they process all pixels of the image, classic algorithms for dense images are inefficient on sparse data. We address this inefficiency by introducing a new algorithm specifically designed for sparse images. We show that we can further improve this sparse algorithm by specializing it for the data input format, avoiding a decoding step and processing multiple pixels at once. A benchmark on Intel and AMD CPUs shows that the algorithm is from x 1.6 to x 2.5 faster on sparse images.\",\"PeriodicalId\":120855,\"journal\":{\"name\":\"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP48288.2019.9049184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP48288.2019.9049184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

密集图像的连通分量标注和分析已经在各种体系结构上得到了广泛的研究。一些应用,如高能物理中的粒子探测器,需要以高吞吐量分析许多小而稀疏的图像。由于它们处理图像的所有像素,因此用于密集图像的经典算法在稀疏数据上是低效的。我们通过引入专门为稀疏图像设计的新算法来解决这种低效率问题。我们表明,我们可以进一步改进这种稀疏算法,将其专门用于数据输入格式,避免解码步骤并一次处理多个像素。在英特尔和AMD cpu上的基准测试表明,该算法在稀疏图像上的速度从1.6到2.5快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SparseCCL: Connected Components Labeling and Analysis for sparse images
Connected components labeling and analysis for dense images have been extensively studied on a wide range of architectures. Some applications, like particles detectors in High Energy Physics, need to analyse many small and sparse images at high throughput. Because they process all pixels of the image, classic algorithms for dense images are inefficient on sparse data. We address this inefficiency by introducing a new algorithm specifically designed for sparse images. We show that we can further improve this sparse algorithm by specializing it for the data input format, avoiding a decoding step and processing multiple pixels at once. A benchmark on Intel and AMD CPUs shows that the algorithm is from x 1.6 to x 2.5 faster on sparse images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Real-Time Embedded Video Denoising Algorithm Run-Time Coarse-Grained Hardware Mitigation for Multiple Faults on VLIW Processors Speeding-up CNN inference through dimensionality reduction POLYCiNN: Multiclass Binary Inference Engine using Convolutional Decision Forests Mapping and Frequency Joint Optimization for Energy Efficient Execution of Multiple Applications on Multicore Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1